Portafolios óptimos bajo estimadores robustos clásicos y bayesianos con aplicaciones al mercado peruano de acciones

No hay miniatura disponible

Fecha

2015-07-20

Título de la revista

ISSN de la revista

Título del volumen

Editor

Pontificia Universidad Católica del Perú

DOI

Resumen

El Modelo del Portafolio, propuesto por Markowitz (1952), es uno de los más importantes en el ámbito nanciero. En él, un agente busca lograr un nivel óptimo de sus inversiones considerando el nivel de riesgo y rentabilidad de un portafolio, conformado por un conjunto de acciones bursátiles. En este trabajo se propone una extensión a la estimación clásica del riesgo en el Modelo del Portafolio usando Estimadores Robustos tales como los obtenidos por los métodos del Elipsoide de Volumen mínimo, el Determinante de Covarianza Mínima, el Estimador Ortogonalizado de Gnanadesikan y Kettenring, el Estimador con base en la matriz de Covarianzas de la distribución t-student Multivariada y la Inferencia Bayesiana. En este último caso se hace uso de los modelos Normal Multivariado y t-student multivariado. En todos los modelos descritos se evalúa el impacto económico y las bondades estadísticas que se logran si se usaran estas técnicas en el Portafolio del inversionista en lugar de la estimación clásica. Para esto se utilizarán activos de la Bolsa de Valores de Lima.

Descripción

Palabras clave

Estadística bayesiana, Finanzas, Modelos estadísticos, Riesgo (Economía), Bolsa de Valores

Citación

Colecciones

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced

Licencia Creative Commons

Excepto se indique lo contrario, la licencia de este artículo se describe como info:eu-repo/semantics/openAccess