Portafolios óptimos bajo estimadores robustos clásicos y bayesianos con aplicaciones al mercado peruano de acciones
No hay miniatura disponible
Fecha
2015-07-20
Autores
Título de la revista
ISSN de la revista
Título del volumen
Editor
Pontificia Universidad Católica del Perú
DOI
Resumen
El Modelo del Portafolio, propuesto por Markowitz (1952), es uno de los más importantes
en el ámbito nanciero. En él, un agente busca lograr un nivel óptimo de sus inversiones
considerando el nivel de riesgo y rentabilidad de un portafolio, conformado por un conjunto de acciones bursátiles.
En este trabajo se propone una extensión a la estimación clásica del riesgo en el Modelo del Portafolio usando Estimadores Robustos tales como los obtenidos por los métodos del Elipsoide de Volumen mínimo, el Determinante de Covarianza Mínima, el Estimador Ortogonalizado de Gnanadesikan y Kettenring, el Estimador con base en la matriz de Covarianzas de la distribución t-student Multivariada y la Inferencia Bayesiana. En este último caso se hace uso de los modelos Normal Multivariado y t-student multivariado. En todos los modelos descritos se evalúa el impacto económico y las bondades estadísticas que se logran si se usaran estas técnicas en el Portafolio del inversionista en lugar de la estimación clásica. Para esto se utilizarán activos de la Bolsa de Valores de Lima.
Descripción
Palabras clave
Estadística bayesiana, Finanzas, Modelos estadísticos, Riesgo (Economía), Bolsa de Valores
Citación
Colecciones
item.page.endorsement
item.page.review
item.page.supplemented
item.page.referenced
Licencia Creative Commons
Excepto se indique lo contrario, la licencia de este artículo se describe como info:eu-repo/semantics/openAccess