Talking with signs: a simple method to detect nouns and numbers in a non annotated signs language corpus
No hay miniatura disponible
Fecha
2020-08-31
Autores
Título de la revista
ISSN de la revista
Título del volumen
Editor
Pontificia Universidad Católica del Perú
DOI
Resumen
People with deafness or hearing disabilities who aim to use computer based systems rely on state-of-art video classification and human action recognition techniques that combine traditional movement pat-tern recognition and deep learning techniques. In this work we present a pipeline for semi-automatic video annotation applied to a non-annotated Peru-vian Signs Language (PSL) corpus along with a novel method for a progressive detection of PSL elements (nSDm). We produced a set of video annotations in-dicating signs appearances for a small set of nouns and numbers along with a labeled PSL dataset (PSL dataset). A model obtained after ensemble a 2D CNN trained with movement patterns extracted from the PSL dataset using Lucas Kanade Opticalflow, and a RNN with LSTM cells trained with raw RGB frames extracted from the PSL dataset reporting state-of-art results over the PSL dataset on signs classification tasks in terms of AUC, Precision and Recall.
Descripción
Palabras clave
Redes neuronales (Computación), Algoritmos computacionales, Reconocimiento óptico de patrones
Citación
Colecciones
item.page.endorsement
item.page.review
item.page.supplemented
item.page.referenced
Licencia Creative Commons
Excepto se indique lo contrario, la licencia de este artículo se describe como info:eu-repo/semantics/openAccess