Estudio de un magnetrón utilizando el método de elementos finitos
No hay miniatura disponible
Fecha
2021-02-01
Autores
Título de la revista
ISSN de la revista
Título del volumen
Editor
Pontificia Universidad Católica del Perú
DOI
Resumen
Magnetron sputtering system is a technique that consists in extracting atoms from a target
material by collisions of energetic ions of an inert gas. It is widely used in semiconductor industries
and materials processing research for developing thin films by deposition. During this
process a low temperature capacitively coupled plasma is generated near the cathode and several
variations of the properties of this plasma can affect the thin film deposition process and
quality. An approach to study these types of systems is by computational modeling. The use
of robust computational codes that can handle complicated geometries and can solve complex
systems of differential equations. In this present project we aim to model numerically a system
of magnetrons developed at the Materials Science and Renewable Energies (MatER) laboratory.
Using the geometry measurements and the material properties of each component taken in
the laboratory, a CAD geometry was developed. Furthermore, the electric and magnetic fields
are solved for the geometry configuration and, by implementing a Monte Carlo simulation, the
electron trajectories and velocity distributions in the system are calculated. Finally, we use a
multi-fluid model to solve a simplified system of a 1 dimensional capacitively coupled plasma
and recover the system properties. The method to solve the respective system of equations is
the finite element method implemented in the software COMSOL Multiphysics.
Descripción
Palabras clave
Método de elementos finitos, Películas delgadas, Método de Monte Carlo
Citación
Colecciones
item.page.endorsement
item.page.review
item.page.supplemented
item.page.referenced
Licencia Creative Commons
Excepto se indique lo contrario, la licencia de este artículo se describe como info:eu-repo/semantics/openAccess