An Application of a Short Memory Model With Random Level Shifts to the Volatility of Latin American Stock Market Returns
Archivos
Fecha
2014
Autores
Título de la revista
ISSN de la revista
Título del volumen
Editor
Pontificia Universidad Católica del Perú. Departamento de Economía
Resumen
La evidencia empírica indica que la volatilidad de las series de retornos bursátiles (o .financieras en general) poseen la característica de larga memoria. Sin embargo, de otro lado, existe evidencia que ha mostrado que los procesos de memoria corta contaminados con cambios de nivel aleatorios o esporádicos a menudo pueden ser confundidos con procesos de larga memoria en cuyo caso se dice que esta larga memoria es espuria. En este caso se tiene procesos con memoria larga espúria. Este trabajo representa un estudio empírico del modelo de cambio de nivel aleatorio (RLS), utilizando el enfoque de Lu y Perron (2010) y Li y Perron (2013) para la volatilidad de los retornos bursátiles diarios de cinco países de América Latina. El modelo RLS consiste en la suma de un componente de memoria corta y un componente de cambio de nivel aleatorios, el cual se rige por un proceso de Bernoulli con una probabilidad α. Los resultados de las estimaciones sugieren que los cambios de nivel son poco frecuentes, pero una vez que se tienen en cuenta, la característica de larga memoria y los efectos GARCH desaparecen. También se proporciona un ejercicio de pronóstico fuera de muestra.
Empirical research indicates that the volatility of stock return time series have long memory. However, it has been demonstrated that short memory processes contaminated with random level shifts can often be confused as being long memory. Often this feature is referred to as spurious long memory. This paper represents an empirical study of the random level shift (RLS) model using the approach of Lu and Perron (2010) and Li and Perron (2013) for the volatility of daily stocks returns data for five Latin American countries. The RLS model consists of the sum of a short term memory component and a level shift component, where the level shift component is governed by a Bernoulli process with a shift probability α. The estimation results suggest that the level shifts in the volatility of daily stocks returns data are infrequent but once they are taken into account, the long memory characteristic and the GARCH effects disappear. An out-of-sample forecasting exercise is also provided.
Empirical research indicates that the volatility of stock return time series have long memory. However, it has been demonstrated that short memory processes contaminated with random level shifts can often be confused as being long memory. Often this feature is referred to as spurious long memory. This paper represents an empirical study of the random level shift (RLS) model using the approach of Lu and Perron (2010) and Li and Perron (2013) for the volatility of daily stocks returns data for five Latin American countries. The RLS model consists of the sum of a short term memory component and a level shift component, where the level shift component is governed by a Bernoulli process with a shift probability α. The estimation results suggest that the level shifts in the volatility of daily stocks returns data are infrequent but once they are taken into account, the long memory characteristic and the GARCH effects disappear. An out-of-sample forecasting exercise is also provided.
Descripción
Palabras clave
Retornos, Volatilidad, Larga memoria, Cambios de nivel aleatorios, Filtro de Kalman, Predicción, América Latina
Citación
Colecciones
item.page.endorsement
item.page.review
item.page.supplemented
item.page.referenced
Licencia Creative Commons
Excepto se indique lo contrario, la licencia de este artículo se describe como info:eu-repo/semantics/openAccess