Extensión al modelo DINA reparametrizado con covariable

dc.contributor.advisorValdivieso Serrano, Luis Hilmar
dc.contributor.authorSáenz Egúsquiza, Miguel Angel
dc.date.accessioned2020-10-20T16:25:49Z
dc.date.available2020-10-20T16:25:49Z
dc.date.created2020
dc.date.issued2020-10-20es_ES
dc.description.abstractEn el campo educacional, cuando los estudiantes resuelven problemas su habilidad en un tema particular puede influir en el desempeño de los mismos en un área de estudio similar pero diferente. Por ejemplo, la habilidad en ciencias podría tener un efecto en su dominio sobre las matemáticas, lo que a su vez afectará la forma en que los evaluados responden a las preguntas o ítems sobre matemáticas de una prueba. Por tanto, resulta natural examinar la relación entre el rendimiento en un área particular de estudio y el dominio de los atributos en un tema relacionado. Los modelos de diagnóstico cognitivo (CDM) proporcionan un marco ideal para realizar un análisis de este tipo, ya que clasifican a los examinados en perfiles de atributos que indican su dominio en las habilidades delimitadas permitiendo obtener información más específica con respecto a sus fortalezas y debilidades. Los CDM resuelven varias limitaciones de los métodos clásicos y los modelos de teoría de respuesta a ítems unidimensionales (TRI). Para este estudio se amplía el marco de DINA al incorporar una covariable en un modelo de DINA reparametrizado. La covariable se puede especificar en dos niveles: en el nivel inferior, afectando la forma en que los evaluados resuelven los ítems (es decir, la probabilidad de respuesta), y en el nivel superior, influenciando en el dominio de los atributos (es decir, la clasificación latente). En esta tesis, se desarrolla teóricamente el modelo indicado desde el enfoque clásico. Para la estimación desarrollaremos el método de máxima verosimilitud y el método de la moda a posteriori vía el algoritmo de Esperanza-Maximización (EM) y de Newton-Raphson. Para tal fin, se realiza 4 estudios de simulación con la finalidad de observar en primer lugar el efecto de la covariable cuando afecta simultáneamente a los ítems y a los atributos, luego cuando la covariable afecta por separado a ambos, y también cuando la covariable no los afecta. Finalmente, se muestra su aplicación en la evaluación de la prueba de admisión a una Universidad.es_ES
dc.identifier.urihttp://hdl.handle.net/20.500.12404/17324
dc.language.isospaes_ES
dc.publisherPontificia Universidad Católica del Perúes_ES
dc.publisher.countryPEes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/2.5/pe/*
dc.subjectPsicometríaes_ES
dc.subjectEstimación de parámetroses_ES
dc.subjectEstadística bayesianaes_ES
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#1.01.03es_ES
dc.titleExtensión al modelo DINA reparametrizado con covariablees_ES
dc.typeinfo:eu-repo/semantics/masterThesises_ES
dc.type.otherTesis de maestría
renati.advisor.dni07958730
renati.advisor.orcidhttps://orcid.org/0000-0002-8975-7557es_ES
renati.discipline542037es_ES
renati.levelhttps://purl.org/pe-repo/renati/level#maestroes_ES
renati.typehttp://purl.org/pe-repo/renati/type#tesises_ES
thesis.degree.disciplineEstadísticaes_ES
thesis.degree.grantorPontificia Universidad Católica del Perú. Escuela de Posgradoes_ES
thesis.degree.levelMaestríaes_ES
thesis.degree.nameMaestro en Estadísticaes_ES

Archivos

Colecciones