Aplicaciones del teorema de Brauer al problema espectral inverso no negativo
No Thumbnail Available
Date
2011
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Pontificia Universidad Católica del Perú
Abstract
El teorema de Brauer describe un procedimiento para modificar un autovalor del espectro de una matriz compleja y Rado lo extiende para modificar una parte del espectro.En los años cincuenta Perfect utiliza estos resultados para dar condiciones bajo la cual una colección de números reales sea el espectro de una matriz no negativa [6], [7]. Untrabajo debido a Suleimanova [12], junto con estas condiciones, dan origen al problema espectral inverso no negativo. Recientemente se han descrito varias condiciones suficientes basadas en los teoremas de Brauer y Rado para la realizacion de matrices no negativas con espectro real. En este trabajo profundizamos estas técnicas y se hace una recopilación de los resultados conocidos hasta el momento para el problema del espectro real inverso no negativo que utilizan el teorema de Brauer.
Description
Keywords
Problema espectral inverso
Citation
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as info:eu-repo/semantics/openAccess