Aplicaciones del teorema de Brauer al problema espectral inverso no negativo

No Thumbnail Available

Date

2011

Journal Title

Journal ISSN

Volume Title

Publisher

Pontificia Universidad Católica del Perú

Abstract

El teorema de Brauer describe un procedimiento para modificar un autovalor del espectro de una matriz compleja y Rado lo extiende para modificar una parte del espectro.En los años cincuenta Perfect utiliza estos resultados para dar condiciones bajo la cual una colección de números reales sea el espectro de una matriz no negativa [6], [7]. Untrabajo debido a Suleimanova [12], junto con estas condiciones, dan origen al problema espectral inverso no negativo. Recientemente se han descrito varias condiciones suficientes basadas en los teoremas de Brauer y Rado para la realizacion de matrices no negativas con espectro real. En este trabajo profundizamos estas técnicas y se hace una recopilación de los resultados conocidos hasta el momento para el problema del espectro real inverso no negativo que utilizan el teorema de Brauer.

Description

Keywords

Problema espectral inverso

Citation

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as info:eu-repo/semantics/openAccess