Hodge Theory and Electromagnetism

dc.contributor.authorJuárez, Omar
dc.contributor.authorLachira, Martín
dc.date.accessioned2020-12-16T02:17:52Z
dc.date.available2020-12-16T02:17:52Z
dc.date.issued2020
dc.description.abstractLet M be a compact domain in R3. The Hodge Decomposition Theorem yields a decomposition of the space of vector elds on M into ve mutually orthogonal subspaces that encode geometric and topological features of M. This decomposition is useful in many branches of mathematics, physics, and engineering. In this paper, we study the general version of this theorem, valid for di erential forms on smooth, compact, oriented manifolds with boundary, in any dimension, and deduce from it the particular ve-term decomposition for compact domains in 3-space. We do this by using basic notions from multivariable calculus, linear algebra, di erential forms, and algebraic topology, following the article [CDTG], by Cantarella, DeTurck and Gluck, and the book of Schwarz [S]. Furthermore, we present some applications of the notions developed in this paper to the formulation of Maxwell's equations and to the graphical representations of di erential forms in Rn.es_ES
dc.identifier.urihttp://repositorio.pucp.edu.pe/index/handle/123456789/173522
dc.language.isoenges_ES
dc.publisherPontificia Universidad del Perú. Vicerrectorado de Investigación. Dirección de Gestión de la Investigaciónes_ES
dc.publisher.countryPE
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/2.5/pe/es_ES
dc.subjectHodge decompositiones_ES
dc.subjectHodge theoryes_ES
dc.subjectDi erential formses_ES
dc.subjectSmooth manifoldses_ES
dc.subjectMaxwell equationses_ES
dc.subject.ocdehttp://purl.org/pe-repo/ocde/ford#5.09.01
dc.titleHodge Theory and Electromagnetismes_ES
dc.typeinfo:eu-repo/semantics/workingPaper
dc.type.otherDocumento de trabajo

Archivos

Bloque original

Mostrando 1 - 1 de 1
Miniatura
Nombre:
Texto académico final.pdf
Tamaño:
750.32 KB
Formato:
Adobe Portable Document Format
Descripción:
Texto académico

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: