El análisis de correspondencias conjunto y múltiple ajustado
dc.contributor.advisor | Valdivieso Serrano, Luis Hilmar | |
dc.contributor.author | Saavedra López, Ricardo Elías | es_ES |
dc.date.accessioned | 2012-08-15T16:32:51Z | es_ES |
dc.date.available | 2012-08-15T16:32:51Z | es_ES |
dc.date.created | 2012 | es_ES |
dc.date.issued | 2012-08-15 | es_ES |
dc.description.abstract | Esta tesis presenta una revisión de los fundamentos teóricos de dos de las más recientes extensiones de la técnica estadística conocida como análisis de correspondencia (AC): el análisis de correspondencia conjunto (ACC) y el análisis de correspondencia múltiple ajustado (ACMA); y muestra una aplicación práctica de éstas a una encuesta de egresados de la Pontificia Universidad Católica del Perú. El análisis de correspondencia simple (ACS) es el primer alcance del análisis de correspondencias y se presenta cuando cada categoría de una variable se describe en función de la dependencia existente de los valores de otra única variable. Su extensión a más de 2 variables es conocida como el análisis de correspondencia múltiple (ACM). Si bien se puede encontrar literatura sobre el ACS y el ACM, es importante destacar que el ACC y el ACMA han sido poco difundidos, encontrándose escasa literatura sobre el tema, más aún, en nuestro idioma. Por lo tanto, se hace necesaria una revisión de las dos primeras a modo de contexto y una presentación metodológica y detallada de las dos últimas. Con la aplicación práctica se pretende obtener una representación de las facultades de los egresados de la PUCP en función del ingreso en su primer empleo relacionado con la formación recibida en la universidad y la percepción del grado de desarrollo de la competencia de comunicación recibida en la universidad. Esta aplicación consistiría en aplicar los 4 métodos descritos, comparándolos mediante nuevas técnicas que permiten reproducir las tablas de contingencia originales a partir de las representaciones obtenidas por los métodos indicados. | es_ES |
dc.identifier.uri | http://hdl.handle.net/20.500.12404/1466 | |
dc.language.iso | spa | es_ES |
dc.publisher | Pontificia Universidad Católica del Perú | es_ES |
dc.publisher.country | PE | es_ES |
dc.rights | info:eu-repo/semantics/openAccess | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/2.5/pe/ | * |
dc.subject | Análisis estadístico | es_ES |
dc.subject | Análisis multivariante | es_ES |
dc.subject | Estadística | es_ES |
dc.subject | Modelos matemáticos | es_ES |
dc.subject.ocde | https://purl.org/pe-repo/ocde/ford#1.01.03 | es_ES |
dc.title | El análisis de correspondencias conjunto y múltiple ajustado | es_ES |
dc.type | info:eu-repo/semantics/masterThesis | es_ES |
dc.type.other | Tesis de maestría | |
renati.advisor.dni | 07958730 | |
renati.discipline | 542037 | es_ES |
renati.level | https://purl.org/pe-repo/renati/level#maestro | es_ES |
renati.type | http://purl.org/pe-repo/renati/type#tesis | es_ES |
thesis.degree.discipline | Estadística | es_ES |
thesis.degree.grantor | Pontificia Universidad Católica del Perú. Escuela de Posgrado | es_ES |
thesis.degree.level | Maestría | es_ES |
thesis.degree.name | Maestro en Estadística | es_ES |