Marco de trabajo para el desarrollo de proyectos de analítica de datos

No hay miniatura disponible

Fecha

2024-08-09

Título de la revista

ISSN de la revista

Título del volumen

Editor

Pontificia Universidad Católica del Perú

DOI

Resumen

El desarrollo de proyectos de analítica de datos en las organizaciones requiere de procesos bien definidos para su éxito. Existen procesos estándar de analítica de datos, como CRISP-DM, que han tenido una amplia adopción en las últimas décadas. Sin embargo, mediante una búsqueda sistemática de la literatura se ha podido evidenciar que muchas de las organizaciones a menudo no aplican CRISP-DM o procesos similares, como SEMMA y KDD, tal como están, sino que muchos de ellas adaptan estos marcos de trabajo para abordar requerimientos específicos en diversos contextos de la industria. Además, según estos estudios se evidencia que un grupo considerable de empresas emplea Scrum u otros marcos de trabajo para el desarrollo de software con el fin de llevar a cabo sus proyectos de analítica de datos, lo cual no es correcto pues estos marcos de trabajo no abordan las particularidades de un ciclo de vida de una solución analítica. Si bien CRISPDM es el marco de trabajo para analítica de datos más empleado, este mismo posee un conjunto de falencias enfocadas en diversos casos de uso o procesos de negocio que ha llevado a muchas organizaciones a adaptar este marco a sus necesidades. Hasta ahora no se ha sugerido ninguna adaptación que permita abordar las falencias que los diferentes dominios en la industria poseen. Este artículo aborda la propuesta del diseño de un marco de trabajo para proyectos de analítica de datos general denominado GEN-DA (Generic Data Analytics framework por sus siglas en inglés). GEN-DA extiende y modifica CRISP-DM para solucionar las diferentes falencias encontradas en la literatura y lograr un ciclo de vida del proyecto de analítica de datos que pueda ser empleado en todos los contextos de la industria. Este marco de trabajo ha sido diseñado y evaluado de forma iterativa empleando una metodología en ciencias del diseño gracias a la participación de expertos en analítica de datos mediante el método de validación por Juicio Experto. Los resultados obtenidos son alentadores y habilita la factibilidad de emplear este marco propuesto en un entorno real, cuyos resultados, se presume, que serán satisfactorios.

Descripción

Palabras clave

Minería de datos--Investigación--Metodología, Administración de proyectos, Ciencia del diseño

Citación

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced

Licencia Creative Commons

Excepto se indique lo contrario, la licencia de este artículo se describe como info:eu-repo/semantics/openAccess