Approximate bayesian estimation of stochastic volatility in mean models using hidden Markov models: empirical evidence from stock Latin American markets

Miniatura

Fecha

2021-10

Título de la revista

ISSN de la revista

Título del volumen

Editor

Pontificia Universidad Católica del Perú. Departamento de Economía

Resumen

The stochastic volatility in mean (SVM) model proposed by Koopman and Uspensky (2002) is revisited. This paper has two goals. The first is to offer a methodology that requires less computational time in simulations and estimates compared with others proposed in the literature as in Abanto-Valle et al. (2021) and others. To achieve the first goal, we propose to approximate the likelihood function of the SVM model applying Hidden Markov Models (HMM) machinery to make possible Bayesian inference in real-time. We sample from then posterior distribution of parameters with a multivariate Normal distribution with mean and variance given by the posterior mode and the inverse of the Hessian matrix evaluated at this posterior mode using importanc sampling (IS). The frequentist properties of estimators is anlyzed conducting a simulation study. The second goal is to provide empirical evidence estimating the SVM model using daily data for five Latin American stock markets. The results indicate that volatility negatively impacts returns, suggesting that the volatility feedback effect is stronger than the effect related to the expected volatility. This result is exact and opposite to the finding of Koopman and Uspensky (2002). We compare our methodology with the Hamiltonian Monte Carlo (HMC) and Riemannian HMC methods based on Abanto-Valle et al. (2021).

Descripción

Palabras clave

Mercado Bursátiles de América Latina, Volatilidad Estocástica en Media, Efecto Feed-Back, Hamiltonian Monte Carlo, Hidden Markov Models, Riemannian Manifold Hamiltonian Monte Carlo, Modelos Espacio Estado No Lineales

Citación

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced

Licencia Creative Commons

Excepto se indique lo contrario, la licencia de este artículo se describe como info:eu-repo/semantics/openAccess