Developing of a device for measuring the areal distribution of the forces in the contact zone of foot and underground for the use in leg prostheses
dc.contributor.advisor | Fröhlich, Thomas | |
dc.contributor.advisor | Elías Giordano, Dante Ángel | |
dc.contributor.author | Kubisch, Jörg | |
dc.date.accessioned | 2020-09-18T22:26:22Z | |
dc.date.available | 2020-09-18T22:26:22Z | |
dc.date.created | 2020 | |
dc.date.issued | 2020-09-18 | es_ES |
dc.description.abstract | The presented work demonstrates the process of designing a cheap, low cost three axis force sensor. Further it describes its integration in an array of multiple sensors to measure the distribution of forces acting on the sole of a prosthetic foot. The focus will be on easy manufacturing and common materials since the sensor will be integrated in a low cost prosthesis for lower limp amputees. Using the knowledge from bio mechanics and some basic assumptions for the later use, requirements for the project are derived. After a presentation of some state of the art sensor principles, suitable concepts are collected. Than, the concepts are compared using a comparison table to find the one the fits the requirements the best. A very compelling concept using barometers casted in silicone rubber is tested using a simple prototype to try out whether it is a good candidate or not. The tests show that the concept is capable of measuring forces but due to its disadvantageous susceptibility for temperature changes it is rejected for the further development process. The concepts are reevaluated and a new concept is chosen. Afterwards the design process is described. Beginning with the mechanical design explaining the working principle. The calculation of the dimensions is presented. After that a circuit to work with a capacitive measurement as well as a version for resitive measurement is developed and a layout for a prototype board using capacitive measurement is proposed. To prove the functionality, the capacitive system is built up as a prototype. To try the measurement behavior and to measure its repeatability a test stand is designed. It uses commercial available load cells to conduct a reference measurement. The output of the sensor is compared to the reference measurement. With various different test procedures the curves mapping the measured values to the force for normal and shear force measurement are determined. During the tests, different aspects of performance like creep behavior or hysteresis are investigated. Also the repeatability is measured various times under different loads to make reliable estimations of the precision of the measurement. Further on, a resistive force sensor which could be used instead of the capacitive sensing elements is tested regarding its curve and performance to have a comparison of the advantages and disadvantages of either designing the future sensor with resistive or capacitive sensing elements. With both concepts a repeatability of a few percent uncertainty can be achieved. Further on ways to improve future versions of the sensor are described based on the experiences made during the work with the prototype. Finally a possible way to integrate multiple sensors into a sensing array is proposed. The design as well as possible electrics to acquire the data are discussed. This way a solid basis for further developments of a sensing array measuring the force distribution is given. | es_ES |
dc.description.abstract | Die vorgestellte Arbeit zeigt den Prozess der Konstruktion eines preiswerten, kostengünstigen Dreiachs-Kraftsensors. Weiterhin wird eine Integration der Sensoren in ein Array, zur Messung der Verteilung von Kräften auf der Fußsohle besprochen. Der Schwerpunkt soll dabei auf einer einfachen und günstigen Herstellung, sowie der Verwendung handelsüblicher Materialien liegen, da der Sensor in ein kostengünstiges Prothesenkonzept integriert werden soll. Ausgehend von den Erkenntnissen der Biomechanik und einigen grundlegenden Annahmen für die Nutzung des Sensors, werden verschiedene Anforderungen abgeleitet. Im Folgenden wird der Stand der Technik anhand einiger aktueller Forschungsarbeiten und Sensorprinzipien vorgestellt. Daraufhin werden geeignete Konzepte gesammelt, die zur Entwicklung des Sensors eingesetzt werden können. Anschließend werden die Konzepte anhand einer Vergleichstabelle verglichen, um das bestgeeignetste Konzept zu finden. Eine sehr überzeugende Variante, bei der Barometerchips in Silikon eingegossen werden, wird mit einem einfachen Prototyp getestet, um herauszufinden, ob es sich um einen guten Kandidaten für die weitere Entwicklung handelt, oder nicht. Die Versuche zeigen, dass der Prototyp in der Lage ist, Kräfte zu messen, jedoch zeigt sich eine große Anfälligkeit für Temperaturschwankungen. Das Konzept wird deshalb nicht weiter verfolgt. Die Konzepte werden neu bewertet und anschließend ein Neues ausgewählt. Daraufhin wird der Entwurfsprozess beschrieben. Das Funktionsprinzip und die Auslegung der Abmessungen werden erläutert. Anschließend wird eine Schaltung zum Arbeiten mit einer kapazitiven Messung, sowie eine Schaltung für eine resitive Messung entwickelt und ein Layout für eine Platine zur kapazitiven Kraftmessung vorgeschlagen. Zum Nachweis der Funktionalität wird das kapazitive System als Prototyp aufgebaut. Um das Messverhalten zu testen und seine Wiederholbarkeit nachzuweisen, wird ein Prüfstand entworfen. Zur Durchführung einer Referenzmessung werden handelsübliche Wägezellen verwendet. Der Ausgang des Sensors wird mit der Referenzmessung verglichen. Mit verschiedenen Prüfverfahren werden die Kurven bestimmt, die die Messwerte der Normalund Querkraft zuordnen. Während des Tests werden verschiedene Leistungsaspekte wie Kriechverhalten oder Hysterese untersucht. Auch die Wiederholbarkeit wird mehrmals unter verschiedenen Belastungen gemessen, um zuverlässige Schätzungen der Genauigkeit der Messung vorzunehmen. Weiterhin wird ein resistiver Kraftsensor, der anstelle der kapazitiven Sensorelemente verwendet werden könnte, hinsichtlich seiner Kurve und Leistung getestet, um einen Vergleich der Vor- und Nachteile der Konstruktion des zukünftigen Sensors mit resistiven oder kapazitiven Sensorelementen zu erhalten. Mit beiden Konzepten kann eine gute Wiederholgenauigkeit mit nur wenigen Prozent Unsicherheit erreicht werden. Weiterhin werden Möglichkeiten zur Verbesserung der zukünftigen Version des Sensors auf Grundlage der gesammelten Erfahrungen beschrieben. Schließlich wird ein möglicher Weg zur Integration mehrerer Sensoren in eine Sensoranordnung vorgeschlagen. Das Design, sowie die mögliche Elektrik zur Erfassung der Daten werden diskutiert. Damit wird eine solide Grundlage für die Weiterentwicklung einer Sensoranordnung zur Messung der Kraftverteilung geschaffen. | es_ES |
dc.description.uri | Tesis | es_ES |
dc.identifier.uri | http://hdl.handle.net/20.500.12404/17068 | |
dc.language.iso | eng | es_ES |
dc.publisher | Pontificia Universidad Católica del Perú | es_ES |
dc.publisher.country | PE | es_ES |
dc.rights | info:eu-repo/semantics/openAccess | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/2.5/pe/ | * |
dc.subject | Prótesis--Diseño mecánico | es_ES |
dc.subject | Sensores | es_ES |
dc.subject | Biomecánica | es_ES |
dc.subject.ocde | https://purl.org/pe-repo/ocde/ford#2.03.01 | es_ES |
dc.title | Developing of a device for measuring the areal distribution of the forces in the contact zone of foot and underground for the use in leg prostheses | es_ES |
dc.type | info:eu-repo/semantics/masterThesis | es_ES |
dc.type.other | Tesis de maestría | |
renati.advisor.dni | 10142907 | |
renati.advisor.orcid | https://orcid.org/0000-0001-5920-9608 | es_ES |
renati.discipline | 713347 | es_ES |
renati.level | https://purl.org/pe-repo/renati/level#maestro | es_ES |
renati.type | http://purl.org/pe-repo/renati/type#tesis | es_ES |
thesis.degree.discipline | Ingeniería Mecánica | es_ES |
thesis.degree.grantor | Pontificia Universidad Católica del Perú. Escuela de Posgrado | es_ES |
thesis.degree.level | Maestría | es_ES |
thesis.degree.name | Maestro en Ingeniería Mecánica | es_ES |