Influencia de big data y economía circular en el desempeño operacional de la cadena de suministro del sector manufactura peruano

dc.contributor.advisorNegrón Naldos, Luis Alfredo
dc.contributor.authorOlivera Flores, Hugo
dc.contributor.authorMartinez Toledo, Ilich Daniel
dc.contributor.authorObispo Oscco, Juan Carlos
dc.date.accessioned2023-11-14T16:43:08Z
dc.date.available2023-11-14T16:43:08Z
dc.date.created2023
dc.date.issued2023-11-14
dc.description.abstractLas operaciones industriales, de giros de manufactura y servicio, se han visto impactadas por la digitalización y el enfoque financiero ecosostenibles que demanda el cuidado global. Considerando que se esté ingresando a la recopilación y análisis de macrodatos (estructurados y no estructurados). Actualmente, no solo son buenas prácticas de empresas retail, bancos y seguros, sino que ya son tendencia en el sector manufacturero, pero su única limitante es la inversión en la infraestructura. La presente investigación busca conocer el vínculo entre la cadena de suministro de la economía circular, big data y el desempeño operacional de la cadena de suministro en el sector manufacturero peruano. La investigación tuvo un enfoque cuantitativo, diseño observacional y alcance es relacional-explicativo. Para probar el marco propuesto se tomó un enfoque de análisis factorial confirmatorio (AFC) utilizando datos recopilados a través de una encuesta con 48 preguntas que involucró a 77 empresas, determinando que existe significancia que corroboran las hipótesis que explican la correlación entre big data y la economía circular con el desempeño operacional a un nivel de confiabilidad del 95%. Los resultados de Alfa (fiabilidad) y Omega (fiabilidad compuesta) son mayor a 0.7. Asimismo, en la varianza extraída todos los constructos presentaron valores mayores a 0.5. En el análisis del modelo estructural (SEM) se presentó un buen ajuste, debido valor de chi-cuadrado entre los grados de libertad fue de 1.474, siendo menor a 3. Es importante señalar, en la medida que este modelo se implemente dentro de la manufactura mejorará la flexibilidad para cambiar el volumen de fabricación y tiempo de entrega a través de obtener conocimientos y apoyar su proceso de toma de decisiones. Esto implica que los directivos deben prestar suficiente atención a la infraestructura informática y la integración con otros sistemas de manera innovadora, en tiempo real y más eficiente, permitiendo la interacción de todas las áreas para un mejor análisis de los datos.es_ES
dc.description.abstractIndustrial manufacturing and service operations went hit by digitization and the eco- sustainable financial approach that global care demands. The collection and analysis of big data (structured and unstructured) are being entered in different industries, where there must be a perfect pairing between the infrastructure and qualified personnel for decision-making based on the data and thus achieve that the companies be sustainable. Currently, they are not only good practices for retail, banking, and insurance companies, but they are already trending in the manufacturing sector, but their only limitation is an investment in infrastructure. The investigation seeks to know the link between the supply chain of the circular economy, big data, and the operational performance of the supply chain in the peruviana manufacturing sector. The research had a quantitative approach, observational design, and scope are relational-explanatory. To test the proposed framework, a confirmatory factor analysis (CFA) approach was taken using data collected through a survey with 48 questions that involved 77 companies, determining that there is a significance that corroborates the hypotheses that explain the causal relationships between big data and the circular economy with an operational performance at a reliability level of 95%. The results of Alpha (reliability) and Omega (composite reliability) are values greater than 0.7. Likewise, in the variance extracted, all the constructs presented values greater than 0.5. It was summited a fine adjustment on the structural model analysis (SEM) due to the chi-square value between the degrees of freedom being 1.474, being less than 3. It's important to highlight that, as long as this model in the manufacturing process is implemented, it will improve the flexibility to change manufacturing volume and delivery time by gaining knowledge and supporting their decision-making process. It implies that managers must pay sufficient attention to the IT infrastructure and the integration with other systems in an innovative, real-time, and more efficient way, allowing the interaction of all areas for better data analysis.es_ES
dc.identifier.urihttp://hdl.handle.net/20.500.12404/26422
dc.language.isospaes_ES
dc.publisherPontificia Universidad Católica del Perúes_ES
dc.publisher.countryPEes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/*
dc.subjectIndustrias manufactureras--Perúes_ES
dc.subjectEconomía ambientales_ES
dc.subjectBig dataes_ES
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#5.02.04es_ES
dc.titleInfluencia de big data y economía circular en el desempeño operacional de la cadena de suministro del sector manufactura peruanoes_ES
dc.typeinfo:eu-repo/semantics/masterThesises_ES
dc.type.otherTesis de maestría
renati.advisor.dni10788917
renati.advisor.orcidhttps://orcid.org/0000-0003-1328-0323es_ES
renati.author.dni44111063
renati.author.dni44592130
renati.author.dni41301771
renati.discipline722107es_ES
renati.jurorO ́Brien Cáceres, Juanes_ES
renati.jurorCachay Silva, Gonzalo Javieres_ES
renati.jurorNegrón Naldos, Luis Alfredoes_ES
renati.levelhttps://purl.org/pe-repo/renati/level#maestroes_ES
renati.typehttps://purl.org/pe-repo/renati/type#tesises_ES
thesis.degree.disciplineDirección de Operaciones Productivases_ES
thesis.degree.grantorPontificia Universidad Católica del Perú. CENTRUMes_ES
thesis.degree.levelMaestríaes_ES
thesis.degree.nameMaestro en Dirección de Operaciones Productivases_ES

Archivos