Identificación de conglomerados espaciales de acuerdo a niveles de morosidad de empresas en el Perú

dc.contributor.advisorQuiroz Cornejo, Zaida Jesús
dc.contributor.authorTristán Gómez, Alex Edward
dc.date.accessioned2021-11-07T22:06:57Z
dc.date.available2021-11-07T22:06:57Z
dc.date.created2021
dc.date.issued2021-11-07
dc.description.abstractEl cumplimiento de las obligaciones financieras que tienen las empresas es respaldado por una correcta gestión de riesgo de crédito, esto evita problemas de liquidez y solvencia. Por ello es importante detectar los niveles de riesgo de morosidad en las empresas. La presente tesis tiene como objetivo identifi car conglomerados de provincias del Perú, en funciona de la tasa de incumplimiento de pagos, conocida también como la tasa de morosidad. Para ello se propone un modelamiento en dos niveles. En el primer nivel se usan modelos aglomerativos jerárquicos para seleccionar n conglomerados candidatos a priori, donde el número fi nal de conglomerados se escoge mediante criterios de selección de modelos. Posteriormente, en un segundo nivel, modelaremos el nivel de riesgo haciendo uso del modelo de Poisson y prioris condicionales autoregresivas en base a los conglomerados de nidos en el primer nivel e incluyendo covariables. Los modelos pueden ser reescritos como modelos Gaussianos latentes, y se puede usar inferencia bayesiana para estimar sus parámetros, específicamente a través de la aproximación de Laplace anidada integrada. Finalmente, como resultado de la aproximación se obtienen conglomerados de provincias de acuerdo a sus niveles de morosidad, permitiendo clasi ficar las provincias en conglomerado de alto, medio y bajo nivel de riesgo de morosidad.es_ES
dc.description.abstractCompliance with the nancial obligations of companies is ensured by proper credit risk management, this avoids liquidity and solvency problems. For this reason, it is important to identify the risk level of default in peruvian companies. The goal of this thesis is to identify clusters of provinces of Per u with regard to the default rate of payments, also known as probability of default. Thus it is proposed a model in two stages. In the rst stage hierarchical agglomerative models select prior candidate clusters, and the nal number of clusters is selected through selection criteria of models. In the second stage it is proposed the Poisson model considering autoregressive conditional prioris, the clusters de ned in the rst stage, and also including covariates. This model ll in the class of Gaussian latent models, therfore its paremeters were estimated using bayesian inference, speci cally through integrated nested Laplace approximation. Finally, as a result, we found clusters in accordance with the default level, allowing to classify provinces into clusters of high, medium and low risk level.es_ES
dc.identifier.urihttp://hdl.handle.net/20.500.12404/20819
dc.language.isospaes_ES
dc.publisherPontificia Universidad Católica del Perúes_ES
dc.publisher.countryPEes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-sa/2.5/pe/*
dc.subjectEstadística bayesianaes_ES
dc.subjectVariables latenteses_ES
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#1.01.03es_ES
dc.titleIdentificación de conglomerados espaciales de acuerdo a niveles de morosidad de empresas en el Perúes_ES
dc.typeinfo:eu-repo/semantics/masterThesises_ES
dc.type.otherTesis de maestría
renati.advisor.dni43704124
renati.advisor.orcidhttps://orcid.org/0000-0003-3821-0815es_ES
renati.author.dni72789733
renati.discipline542037es_ES
renati.jurorValdivieso Serrano, Luis Hilmar
renati.jurorQuiroz Cornejo, Zaida Jesús
renati.jurorBenites Sánchez, Luis Enrique
renati.levelhttps://purl.org/pe-repo/renati/level#maestroes_ES
renati.typehttps://purl.org/pe-repo/renati/type#tesises_ES
thesis.degree.disciplineEstadísticaes_ES
thesis.degree.grantorPontificia Universidad Católica del Perú. Escuela de Posgrado.es_ES
thesis.degree.levelMaestríaes_ES
thesis.degree.nameMaestro en Estadísticaes_ES

Archivos

Colecciones