Adjoint orbits of sl(2, R) and their geometry
No Thumbnail Available
Date
2020-12-12
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Pontificia Universidad Católica del Perú
Abstract
Para el grupo especial lineal SL(2, R) y su álgebra de Lie sl(2, R)estudiamos propiedades geométricas asociadas a sus órbitas adjuntas. En particular mostramos que se presentan apenas tres alternativas para la órbita: o bien es un hiperboloide de una hoja, o un hiperboloide de dos hojas o en su defecto un cono. Además, introducimos un potencial específico y estudiamos el correspondiente campo gradiente y su dinámica al restringirnos a la órbita adjunta. También describimos la estructura simpléctica de tales órbitas que provienen de la bien conocida forma simpléctica de Kirillov–Kostant–Souriau en órbitas coadjuntas.
Let SL(2,R) be the special linear group and sl(2, R) its Lie algebra. We study geometric properties associated to the adjoint orbits. In particular, we show that just three possibilities arise: either the adjoint orbit is a one-sheeted hyperboloid, or a two-sheeted hyperboloid, or else a cone. In addition, we introduce a specific potential and study the corresponding gradient vector field and its dynamics when we restrict to the adjoint orbit. We also describe the symplectic structure on these adjoint orbits coming from the well known Kirillov-Kostant-Souriau symplectic form on coadjoint orbits.
Let SL(2,R) be the special linear group and sl(2, R) its Lie algebra. We study geometric properties associated to the adjoint orbits. In particular, we show that just three possibilities arise: either the adjoint orbit is a one-sheeted hyperboloid, or a two-sheeted hyperboloid, or else a cone. In addition, we introduce a specific potential and study the corresponding gradient vector field and its dynamics when we restrict to the adjoint orbit. We also describe the symplectic structure on these adjoint orbits coming from the well known Kirillov-Kostant-Souriau symplectic form on coadjoint orbits.
Description
Keywords
Orbitas adjuntas, Estructura simpléctica
Citation
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as info:eu-repo/semantics/openAccess