Tesis y Trabajos de Investigación PUCP
URI permanente para esta comunidadhttp://54.81.141.168/handle/123456789/6
El Repositorio Digital de Tesis y Trabajos de Investigación PUCP aporta al Repositorio Institucional con todos sus registros, organizados por grado: Doctorado, Maestría, Licenciatura y Bachillerato. Se actualiza permanentemente con las nuevas tesis y trabajos de investigación sustentados y autorizados, así como también con los que que fueron sustentados años atrás.
Ingresa a su web: Repositorio Digital de Tesis y Trabajos de Investigación PUCP
Explorar
2 resultados
Resultados de búsqueda
Ítem Texto completo enlazado Efectos de la inestabilidad de Rayleigh-Taylor sobre frentes de reacción descritos mediante la ecuación de Kuramoto-Sivashinky(Pontificia Universidad Católica del Perú, 2018-06-21) Macalupú Huertas, Simón Segundo; Vilela Proaño, Pablo MartinEn el presente trabajo se estudia la propagación de frentes químicos sujetos a la inestabilidad de Rayleigh- Taylor. El flujo convectivo es modelado utilizando la ecuación de Navier-Stokes. Los resultados serán comparados con los obtenidos con la ley de Darcy. La inestabilidad de Rayleigh-Taylor se presenta cuando dos uidos de distintas densidades separados por una delgada interfaz plana se vuelve inestable debido al gradiente de densidades que ocurre cuando el fluido más denso esta encima del menos denso y bajo la acción de la gravedad. Se consideran fluidos con las siguientes condiciones: inmiscibles, incompresibles e irrotacionales. Para describir el frente de propagación hemos utilizado la ecuación de Kuramoto-Sivashinsky(K-S) acoplada con la ecuación de Navier-Stokes para la evolución del ujo de convección. La solución de la ecuación (K-S) ofrece una rica variedad de comportamiento espaciotemporal: frentes planos, frentes simétricos o asimétricos, frentes oscilantes y caóticos. El análisis de estabilidad lineal muestra regiones de bi-estabilidad para diferentes números de Rayleigh.Ítem Texto completo enlazado Mixed H2/H∞ control for infinite dimensional systems(Pontificia Universidad Católica del Perú, 2017-08-28) Noack, Matti; Morán Cárdenas, Antonio Manuel; Reger, JohannThe class of infinite dimensional systems often occurs when dealing with distributed parameter models consisting of partial differential equations. Although forming a comprehensive description, they mainly become manageable by finite dimensional approximations which likely neglect important effects, but underlies a certain structure. In contrast to common techniques for controlling infinite dimensional systems, this work focuses on using robust control methods. Thus, the uncertainty structure that occurs due to the discretization shall be taken into account particularly. Additionally, optimal performance measures can be included into the design process. The mixed H2/H∞ control approach handles the inclusion of disturbances and inaccuracies while guaranteeing specified energy or magnitude bounds. In order to include various of these system requirements, multi-objective robust control techniques based on the linear matrix inequality framework are utilized. This offers great flexibility concerning the formulation of the control task and results in convex optimization problems which can be solved numerically efficient by semi-definite programming. A flexible robot arm structure serves as the major application example during this work. The model discretization leads to an LTI system of specified order with an uncertainty model which is obtained by considering the concrete approximation impact and frequency domain tests. A structural analysis of the system model relates the neglected dynamics to a robust characterization. For the objective selection, stability shall be ensured under all expected circumstances while the aspects of optimal H2 performance, passive behavior and optimal measurement output selection are included. The undesirable spillover effect is thoroughly investigated and thus avoided.