Tesis y Trabajos de Investigación PUCP

URI permanente para esta comunidadhttp://54.81.141.168/handle/123456789/6

El Repositorio Digital de Tesis y Trabajos de Investigación PUCP aporta al Repositorio Institucional con todos sus registros, organizados por grado: Doctorado, Maestría, Licenciatura y Bachillerato. Se actualiza permanentemente con las nuevas tesis y trabajos de investigación sustentados y autorizados, así como también con los que que fueron sustentados años atrás.
Ingresa a su web: Repositorio Digital de Tesis y Trabajos de Investigación PUCP

Explorar

Resultados de búsqueda

Mostrando 1 - 2 de 2
  • Ítem
    Análisis de influencia bajo inferencia bayesiana en evaluaciones escolares de altas consecuencias
    (Pontificia Universidad Católica del Perú, 2018-07-30) Christiansen Trujillo, Andrés Guillermo; Bayes Rodríguez, Cristian Luis
    La presente investigación estudia una metodología para la detección de observaciones atípicas mediante un análisis de influencia bajo la perspectiva de la inferencia bayesiana. Se utiliza la medida de phi-divergencia y el estimador de Monte Carlo, derivado de ésta, trabajados previamente por Peng y Dey (1995), para el cálculo de las divergencias Kullback-Leibler, distancia rectilínea y ji-cuadrado. Además, en el presente trabajo se busca realizar este análisis de influencia en evaluaciones de altas consecuencias (evaluaciones cuyos resultados tienen un alto impacto en la vida de los estudiantes o docentes). El estudio de simulación revela que es posible recuperar observaciones previamente distorsionadas como atípicas. Finalmente, se aplica la metodología a una evaluación realizada por el Ministerio de Educación. Esta aplicación revela que la metodología estudiada es capaz de identificar escuelas con resultados no esperados dadas sus condiciones y resultados anteriores.
  • Ítem
    Evaluación del desempeño sísmico de puentes continuos
    (Pontificia Universidad Católica del Perú, 2017-09-22) Vargas Bejarano, Cesar Isidoro; Zegarra Bejarano, Luis
    En esta tesis se utilizan dos métodos para la evaluación sísmica de puentes. Los métodos usados son el análisis dinámico incremental y simulación de Montecarlo usando Redes neuronales artificiales para la generación de curvas de fragilidad. El análisis dinámico incremental arroja una base de datos bastante amplia. El tratamiento estadístico utilizado abarca conceptos tanto de estadística descriptiva como inferencial. Así se presentan histogramas, frecuencias relativas acumuladas, valores de centralización, dispersión etc. Desde el punto de vista poblacional se presentan los valores de media y proporción poblacional para muestras pequeñas. Para la media se usó el teorema del límite central con la distribución t-student y para la proporción la distribución normal. El segundo método es un proceso de simulación con Montecarlo usando redes neuronales artificiales. Montecarlo toma la muestra de manera aleatoria, debido a esto para obtener resultados confiables se necesitan muchas simulaciones que conllevaría a un costo numérico muy alto. Por ello se usó las redes neuronales artificiales como “reemplazo” del modelo estructural no lineal. Para lograr esto la red se “entreno” con una base de datos del modelo estructural. Para la regresión se utilizó una red supervisada tipo feedforward (red hacia adelante), con el algoritmo de entrenamiento backpropagation (retropropación). La conclusión del trabajo confirma que con la red neuronal artificial se obtienen errores aceptables demostrando que es un MÉTODO DE REGRESIÓN poderoso para sistemas no lineales. La metodología propuesta demostró ser un método de simulación práctico debido a que usa redes neuronales entrenadas para generar curvas de fragilidad. Esto debido a que las redes neuronales tienen un costo numérico menor a un análisis dinámico no lineal.