Tesis y Trabajos de Investigación PUCP
URI permanente para esta comunidadhttp://54.81.141.168/handle/123456789/6
El Repositorio Digital de Tesis y Trabajos de Investigación PUCP aporta al Repositorio Institucional con todos sus registros, organizados por grado: Doctorado, Maestría, Licenciatura y Bachillerato. Se actualiza permanentemente con las nuevas tesis y trabajos de investigación sustentados y autorizados, así como también con los que que fueron sustentados años atrás.
Ingresa a su web: Repositorio Digital de Tesis y Trabajos de Investigación PUCP
Explorar
2 resultados
Resultados de búsqueda
Ítem Texto completo enlazado Corn crops identification using multispectral images from unmanned aircraft systems(Pontificia Universidad Católica del Perú, 2019-04-08) Trujillano Asato, Fedra Catherine; Racoceanu, DanielClimate change and migration of population from rural to urban areas are affecting the agricultural production around the world. This study was based in the particular department of Ancash - Peru where corn is one of the most important crops of the region. Authorities in this region are concerned in finding a method, different from census; that can constantly monitor corn crops areas. This data is important to evaluate how these two causes will impact on food security in Ancash. The first part of the present thesis reviews the current techniques in the recognition of crop areas using remote sensing and multispectral images. The second part explains the methodology developed for this study, considering the data acquisition using Unmanned Aircraft Systems, the preparation of the acquired data and two deep learning model approaches. The first approach is based on binary classification of corn patches using Le Net model with near infrared images. The second one describes the segmentation of corn areas in different stages using the U-net model, in this case five band images were considered. The third part shows the results of both approaches. From these results it is concluded that training a model with data from different stages and scenarios of two campaigns (2016 and 2017) can achieve a 95% of accuracy in corn segmentation.Ítem Texto completo enlazado Registro automático de imágenes digitales de campos de cultivo aplicada a la agricultura de precisión con vehículos aéreos no tripulados(Pontificia Universidad Católica del Perú, 2017-03-09) Melgarejo Román, Lucía Alejandra; Beltrán Castañón, César ArmandoEl presente proyecto de fin de carrera busca presentar un aporte al campo de la agricultura de precisión, el cual tiene como propósito aplicar y desarrollar nuevos mecanismos tecnológicos para optimizar las tareas involucradas en la agricultura. Una de las herramientas dentro de la agricultura de precisión es la percepción remota, con la cual se pueden obtener imágenes de los campos de cultivo a gran altura, permitiendo la identificación de características que no son fácilmente visibles cuando se está al nivel del suelo. Las imágenes capturadas mediante la percepción remota son empleadas por diversos especialistas en la interpretación de determinados índices de vegetación, cuyos resultados ayuden a facilitar y mejorar las tareas del agricultor. La captura de dichas imágenes es obtenida a través de sensores remotos colocados en satélites, aviones y actualmente, el uso de vehículos aéreos no tripulados (Unmanned Aerial Vehicle – UAV) ha sufrido un considerable incremento. Sin embargo se presentan algunos inconvenientes con respecto al procesamiento de las imágenes adquiridas por los UAVs. En primer lugar debido a la necesidad de monitoreo constante, es necesario que los UAVs sobrevuelen la zona a tratar periódicamente, generando una gran cantidad de imágenes de una misma zona a tratar en diferentes periodos de tiempo, resultando que en cada captura las imágenes de la misma zona presentan distintas características: traslación y rotación espacial (considerando un punto de referencia fijo) e iluminación. En segundo lugar, debido a la necesidad de determinación de parámetros de vegetación, temperatura, humedad, entre otros, es necesaria la obtención de imágenes con cámaras que trabajen en diferentes bandas del espectro electromagnético (bandas de color azul, rojo, verde e infrarrojo). En algunas ocasiones una sola cámara no trabaja en todas las bandas del espectro por lo que se requiere colocar más de una cámara en el UAV, con el resultado de que las imágenes capturadas de una misma zona no están alineadas espacialmente debido a la posición de las cámaras en el UAV. De este modo se hace necesario de algún método que permita la alineación de las imágenes capturadas por los UAVs, ya sea que estas provengan de diferentes puntos de vista o de diferentes sensores, para una misma zona a tratar. Al procedimiento requerido para la alineación de dos o más imágenes de un mismo objeto de interés se le conoce como registro de imágenes.