Tesis y Trabajos de Investigación PUCP

URI permanente para esta comunidadhttp://54.81.141.168/handle/123456789/6

El Repositorio Digital de Tesis y Trabajos de Investigación PUCP aporta al Repositorio Institucional con todos sus registros, organizados por grado: Doctorado, Maestría, Licenciatura y Bachillerato. Se actualiza permanentemente con las nuevas tesis y trabajos de investigación sustentados y autorizados, así como también con los que que fueron sustentados años atrás.
Ingresa a su web: Repositorio Digital de Tesis y Trabajos de Investigación PUCP

Explorar

Resultados de búsqueda

Mostrando 1 - 3 de 3
  • Ítem
    Curva polar de una foliación asociada a sus raíces aproximadas
    (Pontificia Universidad Católica del Perú, 2018-10-05) Saravia Molina, Nancy Edith; Fernández Sánchez, Percy; García Barroso, Evelia
    Las foliaciones no dicríticas de segundo tipo fueron caracterizadas por Mattei - Salem [Ma-Sa] en término de su multiplicidad y de su unión de separatrices. En este trabajo de tesis, damos otra caracterización a las foliaciones no dicríticas de segundo tipo con el polígono de Newton de la foliación y el de su unión de separatrices. De otro lado, Loray [Lo] enuncia una caracterización para un tipo de foliaciones con singularidades cuspidales que tienen la misma resolución que su unión de separatrices, sin embargo Fernández, Mozo y Neciosup [F-Mo-N] encuentran una impresición en la caracterización debido a que la condición es necesaria pero no suficiente. Lo que hacemos en este trabajo es caracterizar a dicha familia de foliaciones cuando son de segundo tipo y damos condiciones necesarias y suficientes cuando son de tipo curva generalizada en términos de su orden pesado. Finalmente, generalizamos el resultado de García Barroso y Gwozdziewicz [GB-G1] a foliaciones, esto es, descomponemos la curva polar de una foliación curva generalizada asociada a sus raíces aproximadas. Dicha descomposición viene expresada en función del tipo topológico de la separatriz de la foliación.
  • Ítem
    El teorema de Merle para foliaciones
    (Pontificia Universidad Católica del Perú, 2018-05-29) Torres Estrella, Felipe Antony; Fernández Sánchez, Percy Braulio
    En el presente trabajo, estudiamos el teorema de Merle para curvas algebroides planas irreducibles, en este teorema se establece una descomposición de la curva polar de una curva analítica irreducible que determina la topología de esta curva. También estudiamos el teorema de Rouille, que generaliza el teorema de Merle, en donde se establece la descomposición de la curva polar, de una foliación holomorfa de tipo curva generalizada, que nos brinda información topológica de la separatriz de la foliación.
  • Ítem
    Webs planos y foliaciones Galois
    (Pontificia Universidad Católica del Perú, 2014-10-23) Beltrán Cortez, Andrés William; Marín Pérez, David; Falla Luza, Maycol
    Un k−web W viene dado por una ecuación diferencial ordinaria de primer orden definida de forma implícita por un polinomio de grado k que puede entenderse como una estructura geométrica descrita localmente por k−foliaciones en posición general. La geometría de webs es el estudio de invariantes de familias finitas de foliaciones y fue iniciado por Blaschke y su escuela a inicios de la década de 1920 en Hamburgo. Uno de los resultados emblemáticos obtenido por él junto con Dubordieu, es el que caracteriza la equivalencia local de un germen de un 3−web W en el plano complejo con el 3−web definido por dx · dy · d(x+ y) a través del anulamiento de un covariante diferencial: la curvatura K(W) del web W, que es una 2−forma meromorfa con polos en su discriminante ∆(W), este último conjunto es el lugar donde las tangentes a las hojas de las foliaciones que conforman el web dejan de ser transversales. La estructura local de un k−web no es rígida como sucede en los casos k = 1, 2 sino que admiten invariantes analíticos no triviales: el rango de un web, que no es sino la dimensión de un espacio que relaciona las integrales primeras de las foliaciones que definen a un web, y su curvatura. El estudio de webs desde el punto de vista local ha sido tratado por diferentes autores, ver [2, 11]. Un ejemplo de un k−web proveniente de la geometría algebraica proyectiva es obtenido al considerar una curva algebraica reducida C sobre P 2 C de grado k, la curva dual Cˇ ⊂ Pˇ2 C de C es la curva formada por las tangentes a C. Como Cˇ es de clase k entonces por un punto genérico ℓ ∈ Pˇ2 C pasan exactamente k tangentes a Cˇ. Podemos considerar estas k rectas como hojas de foliaciones sobre un abierto Zariski de Pˇ2 C , de esta manera obtenemos un k−web, llamado web algebraico asociado a la curva C, denotado por WC. Como consecuencia de un teorema clásico de Abel, el rango del k−web WC es maximal, en el sentido que coincide con la cota superior (k − 1)(k − 2)/2. Para un k−web con k > 3 la curvatura es definida como la suma de las curvaturas de todos los 3−subwebs extraídos de un web W. Miháileanu obtiene un resultado donde demuestra que el anulamiento de la curvatura de un k−web es una condición necesaria para la maximalidad del rango de W, ver [32]. Los webs de rango máximo que no son localmente equivalentes a ningún web algebraico WC han sido denominados excepcionales. En [25] los autores demuestran que para cada k > 4 existe una familia infinita de k−webs excepcionales contenidos en el espacio de k−webs de grado 1.