Tesis y Trabajos de Investigación PUCP

URI permanente para esta comunidadhttp://54.81.141.168/handle/123456789/6

El Repositorio Digital de Tesis y Trabajos de Investigación PUCP aporta al Repositorio Institucional con todos sus registros, organizados por grado: Doctorado, Maestría, Licenciatura y Bachillerato. Se actualiza permanentemente con las nuevas tesis y trabajos de investigación sustentados y autorizados, así como también con los que que fueron sustentados años atrás.
Ingresa a su web: Repositorio Digital de Tesis y Trabajos de Investigación PUCP

Explorar

Resultados de búsqueda

Mostrando 1 - 2 de 2
  • Ítem
    Evolución de Schramm-Loewner
    (Pontificia Universidad Católica del Perú, 2021-04-21) Maura Llauri, Christian Jaime; Beltrán Ramirez, Johel Victorino
    The Schramm-Loewner Evolution, or SLE, is a chain of random compact sets that allows us to generate any random curve that satis es conformal invariance as well as the domain Markov property. Its construction goes through the solution of a random version of Loewner's deterministic equation: @tgt(z) = 2 gt(z) 􀀀 f(t) g0(z) = z where the continuous function f is replaced by a stochastic process p kB, where k is a positive constant and B a Brownian motion. This construction enables the inclusion of stochastic calculus tools in the study of the curves generated by the SLE. The main objective of this thesis is to provide an accessible and introductory description of SLE. To do this, Loewner's theorems, which allows us to establish bijections between families of hulls and families of biholomorphisms properly normalized in 1, as well as between real continuous functions of real variable and families of hulls, are enunciated and demonstrated. On these bijections, the good de nition of the SLE is justi ed as a random family of hulls with law induced by a Brownian motion through the Loewner random equation. Then some elementary properties that the SLE inherits from the Brownian movement are presented and the existence of the curve that generates the SLE is demonstrated. Finally, as a way of discussing the non-trivial character of the constant k that appears in front of the Brownian motion that gives rise to the SLE, a demonstration of a phase transition exhibited by the SLE curves is presented, which pass from curves simple to non-simple once you go from k 2 (0:4] to k > 4.
  • Ítem
    Procesos de percolación en dos dimensiones
    (Pontificia Universidad Católica del Perú, 2015-12-07) Vásquez Vivas, Karen Alexandra; Beltrán Ramírez, Johel Victorino
    Los procesos de percolación son modelos que sirven para describir el flujo de líquidos en medios porosos desordenados. Este trabajo es una introducción a los procesos de percolación independiente sobre grafos planos. Primero desarrollamos la teoría de grafos y de probabilidad involucrada para luego definir los modelos de percolación de enlaces y de sitios (bond y site, respectivamente, por sus nombres en inglés), en los cuales los objetos de interés son las aristas y los vértices del grafo, respectivamente. Después exhibimos las cualidades más básicas de estos modelos y las características cuantitativas usadas en su estudio haciendo hincapié en su comportamiento de "transición de fase": un pequeño cambio de los parámetros del modelo resulta en un cambio abrupto de su comportamiento global. En este caso, esta transición de fase ocurre en una probabilidad crítica que, en general, es dificil de hallar exactamente. La excepción son algunos grafos "simétricos", para los que se cumple una interesante relación entre sus probabilidades críticas y que explicaremos en este trabajo. Finalmente, presentamos algoritmos computacionales para simular los modelos de percolación de enlaces y de sitios. Además, utilizamos estos algoritmos para observar gráficamente el comportamiento de transición de fase y los adaptamos para estimar probabilidades críticas que no han podido hallarse analíticamente.