Tesis y Trabajos de Investigación PUCP
URI permanente para esta comunidadhttp://54.81.141.168/handle/123456789/6
El Repositorio Digital de Tesis y Trabajos de Investigación PUCP aporta al Repositorio Institucional con todos sus registros, organizados por grado: Doctorado, Maestría, Licenciatura y Bachillerato. Se actualiza permanentemente con las nuevas tesis y trabajos de investigación sustentados y autorizados, así como también con los que que fueron sustentados años atrás.
Ingresa a su web: Repositorio Digital de Tesis y Trabajos de Investigación PUCP
Explorar
2 resultados
Resultados de búsqueda
Ítem Texto completo enlazado Diagnóstico automático de Roya Amarilla en hojas de cafeto aplicando técnicas de procesamiento de imágenes y aprendizaje de máquina(Pontificia Universidad Católica del Perú, 2018-03-09) Barriga Pozada, Alfonso Carlos Cesar; Arrasco Ordoñez, Carlos Salvador; Beltrán Castañón, César ArmandoActualmente, el café es uno de los recursos naturales más consumidos tanto en el mundo como en el Perú, Por ello, es menester garantizar la calidad en los granos de café, pues esto afectará considerablemente en el precio y posicionamiento en mercados altamente competentes; asimismo, el cultivo de este representa el principal ingreso para algunas familias, el cual se ve amenazado entre otras plagas, por la más perniciosa: La Roya Amarilla. La Roya Amarilla se propaga fácilmente a través del aire, una vez que cae en un cultivo de café, ataca directamente en las hojas, almacenándose en forma de esporas en el envés de estas, y al paso de días consume las hojas hasta defoliar completamente la planta infectada. Debido a ello, la planta no puede adquirir los nutrientes necesarios del sol, pues necesita las hojas como receptores; en consecuencia, el fruto del café (granos) no se desarrollan con normalidad, y por ende su calidad y cantidad de cosecha es baja. Aun cuando no existe una solución absoluta para la erradicación de esta plaga, se la puede controlar; es decir, a través de un proceso manual y exhaustivo los caficultores pueden aplicar una solución bioquímica en la planta que detenga el desarrollo del hongo en las hojas, pero no acaba con ellas, solo se puede prolongar el tiempo de vida de la planta de café. Esto es posible, solo si se detecta en sus inicios la presencia de las esporas en las hojas, pues de haber germinado el hongo sería en vano cualquier intento de recuperar la planta, con lo que solo quedaría el exterminio de la planta. Frente a este panorama, se propone una solución a través del aprendizaje máquina y procesamiento de imágenes, con el fin de automatizar el proceso de detección de la Roya en las hojas y calcular de manera más precisa la severidad del hongo. El proceso comienza en tomar fotografías a las hojas en un espacio semi controlado (con fondo blanco), luego se guardan todas las imágenes de las que se quiera conocer el porcentaje de severidad y ejecutar el programa propuesto, al término de ello el software muestra un reporte estadístico con el grado de incidencia por hoja según la clasificación de severidad que corresponda. Finalmente, destacar que, de manera funcional, el aprendizaje máquina será vital para descartar si hay presencia de roya en la hoja analizada, y luego si la hoja está infectada, con el método de procesamiento de imágenes se calculará de manera más precisa el porcentaje de severidad considerando el área de la hoja examinada.Ítem Texto completo enlazado Análisis de características de forma del bacilo de koch para detección automática de tuberculosis en imágenes digitales(Pontificia Universidad Católica del Perú, 2017-08-26) Ticona Huaroto, Javier Eduardo; Castañeda Aphan, Benjamín; Lavarello Montero, RobertoLa Tuberculosis es una de las enfermedades más letales a nivel mundial. Los esfuerzos en salud pública están dirigidos a la temprana detección de los casos bacilíferos, ya que son la fuente de infección. En el mundo la detección se realiza mediante baciloscopía, que consiste en la observación de muestras de esputo para identificar y contar bacilos con la ayuda de un microscopio. Sin embargo, el procedimiento es subjetivo y consume excesivo tiempo al personal de salud. El presente estudio tiene como objetivo identificar bacilos en imágenes digitales captadas desde el microscopio. Dichas imágenes muestran bacilos y otros artefactos con el mismo color. Ambos tipos de estructura se almacenaron y etiquetaron individualmente conformando la base de datos. Se analizó el espectro de magnitudes de los descriptores de Fourier de dichas estructuras, con el fin de seleccionar los necesarios para la óptima caracterización e identificación. Mediante el método sub-óptimo de selección de características hacia atrás (backward feature selection) se determinó los 14 descriptores que mejor discriminan entre las clases. Para comprobar este método se diseño un programa que procesó las 480 estructuras de la base de datos. Dicho programa obtuvo un porcentaje de acierto de 96.86%, una sensibilidad de 100% y una especificidad de 91.47% El estudio demuestra que es posible la identificación de bacilos mediante la clasificación de descriptores de Fourier previamente seleccionados. Estos resultados sugieren que las técnicas de procesamiento de imágenes digitales tienen el potencial de agilizar el diagnóstico de Tuberculosis.