Tesis y Trabajos de Investigación PUCP

URI permanente para esta comunidadhttp://54.81.141.168/handle/123456789/6

El Repositorio Digital de Tesis y Trabajos de Investigación PUCP aporta al Repositorio Institucional con todos sus registros, organizados por grado: Doctorado, Maestría, Licenciatura y Bachillerato. Se actualiza permanentemente con las nuevas tesis y trabajos de investigación sustentados y autorizados, así como también con los que que fueron sustentados años atrás.
Ingresa a su web: Repositorio Digital de Tesis y Trabajos de Investigación PUCP

Explorar

Resultados de búsqueda

Mostrando 1 - 2 de 2
  • Ítem
    Propuesta metodológica para la optimización de modelos predictivos de generación de residuos sólidos municipales en zonas urbanas
    (Pontificia Universidad Católica del Perú, 2024-06-19) Izquierdo Horna, Luis Antonio; Kahhat Abedrabbo, Ramzy Francis
    El pronóstico de la generación de residuos sólidos municipales (RSM) desempeña un papel esencial en la toma de decisiones y proporciona información relevante para la gestión de residuos, así como una comprensión profunda de los factores que influyen en este proceso. En este trabajo, se desarrolló un modelo de predicción de RSM específico para Lima Metropolitana, basado en variables socioculturales, ambientales y económicas, teniendo al 2019 como año de referencia, debido a la influencia del COVID-19 en los datos sobre este tema en años posteriores a la pandemia. El modelo se construyó utilizando las cantidades per cápita de RSM generadas en cada distrito, junto con parámetros relacionados con el consumo de combustibles en el hogar (como gas natural, electricidad y gas licuado de petróleo) y características demográficas de la población (como edad, nivel de educación y gasto mensual). Dada la calidad y disponibilidad de datos, se optó por utilizar el algoritmo de random forest como técnica de predicción. Las variables analizadas se obtuvieron a partir de la Encuesta Residencial de Consumo y Uso de Energía (ERCUE) a nivel municipal. Los resultados indicaron que el algoritmo implementado explica el 51% de la variabilidad de los datos. Se espera que las recomendaciones presentadas en este estudio sirvan para investigaciones futuras relacionadas con la predicción de RSM, contribuyendo a obtener resultados más precisos y aplicables a contextos específicos.
  • Ítem
    Estimación del consumo de combustible de ómnibus interprovinciales por el método de análisis de regresión lineal múltiple basado en parámetros operacionales y estilos de conducción en la ruta Lima - Trujillo
    (Pontificia Universidad Católica del Perú, 2023-04-04) Gamboa Gonzáles, Willy Alexander; Cuisano Egusquiza, Julio Cesar
    El sector transporte es el mayor consumidor de combustibles líquidos en el Perú (41.8% de la energía final neta) contribuyendo con 21,047.88 GgCO2eq que representan el 10.25% de gases de efecto invernadero presentes en el ambiente (MINAM, 2019). En el caso específico del transporte interprovincial de pasajeros, el combustible representa una parte importante de sus costos de operación (de 30% a 40%) según Pineda et al. (2021). Esta investigación propone una metodología para desarrollar un modelo de consumo de combustible óptimo que se utilice por empresas de transportes para desplegar sus propios planes de control y gestión de costos. Para lograr este propósito se identificaron los factores (variables regresoras1) que afectan significativamente al consumo de combustible en la operación de tres ómnibus de transporte de pasajeros. Los coeficientes de las variables regresoras se estimaron utilizando el método de regresión lineal múltiple utilizando el software Rstudio2 constituyendo una herramienta de gestión muy significativa para reducir el consumo de combustible y la emisión de gases de efecto invernadero. Conociendo la influencia de estas variables regresoras en el consumo de combustible, el estudio permitiría a las empresas de transporte enfocarse en aquellas variables conductuales y operativas de mayor contribución, para rediseñar sus estrategias de conducción y mejorar los índices energéticos y ambientales. Los datos para desarrollar el modelo de regresión lineal múltiple tienen un carácter no determinista y estocástico con presencia de variables discretas y continuas que se recogieron manualmente (pesaje del ómnibus), aplicativos de previsiones meteorológicas (Windfinder), sistema de diagnóstico a bordo (OBD II) y sistema de satélites de navegación global (GNSS). Los datos obtenidos a través del OBD II y GNSS se transmitieron a través del módulo telemático (Teltonika FMB630); pues de investigaciones precedentes se reconoció que era la forma más efectiva y económica para obtener información. El modelo matemático obtenido por regresión lineal múltiple permitió cuantificar la influencia de cada una de las variables y estimar que las mejores condiciones conductuales y operacionales consiguen ahorros de hasta 5.76 galones por viaje en la ruta Trujillo – Lima, acumulando al año 2047.09 galones por año/bus. Sí esta mejora se consiguiera en el 25% de la flota vehicular matriculada en el Perú entre el 2010 y 2018 se alcanzaría un ahorro de combustible de 878,201.69 galones y una reducción de 9´348,688 Kg CO2eq al año. La flota de ómnibus matriculados en el Perú del 2010 en adelante, son tecnológicamente aptas para el control y uso de la inercia y reducción de la inyección de combustible electrónicamente.