Tesis y Trabajos de Investigación PUCP
URI permanente para esta comunidadhttp://54.81.141.168/handle/123456789/6
El Repositorio Digital de Tesis y Trabajos de Investigación PUCP aporta al Repositorio Institucional con todos sus registros, organizados por grado: Doctorado, Maestría, Licenciatura y Bachillerato. Se actualiza permanentemente con las nuevas tesis y trabajos de investigación sustentados y autorizados, así como también con los que que fueron sustentados años atrás.
Ingresa a su web: Repositorio Digital de Tesis y Trabajos de Investigación PUCP
Explorar
2 resultados
Resultados de búsqueda
Ítem Texto completo enlazado Predicción de la rotación de personal y optimización de la estructura de retención en un outsourcing delivery center usando Machine Learning y Programación Multiobjetivo(Pontificia Universidad Católica del Perú, 2024-07-19) Chuquihuamani Altamirano, Karen Elizabeth; Silva Sotillo, Walter AlejandroLa rotación de los empleados se ha convertido en un foco de investigación del área de Recursos Humanos porque tiene efectos significativos en el performance de las organizaciones independientemente de la geografía, tamaño de la empresa o sector. La rotación de personal afecta a la empresa como negocio y como cultura laboral, muchos creen que sus efectos son relativamente fáciles de medir: el costo incurrido en contratar y capacitar nuevo personal, pero una rotación de personal elevada supone costos ocultos como la pérdida de confianza en el empleador, ambiente laboral dañino, además que permite fugas de información y poco sentido de permanencia. En este sentido, el uso de Machine Learning para predecir la probabilidad de que un empleado renuncie a su trabajo podría aumentar en gran medida la capacidad del departamento de Recursos Humanos para intervenir a tiempo y proporcionar un enfoque mitigador a esta situación. Este estudio se realiza con el objetivo de comparar el rendimiento de las técnicas de aprendizaje automático, entre ellos XGBoosting, decisión tree, random forest, KNN, SVM, logistic regression, y LGBM y seleccionar el mejor modelo que busque predecir la permanencia de candidatos en su primer año de labores en posiciones técnicas, de planeamiento y estratégicas en una empresa outsourcing peruana. Todo esto se realizará bajo el modelo estándar abierto CRISP-DM, un método probado para orientar trabajos de minería de datos. Finalmente, tomando como input los resultados del clasificador seleccionado, se construirá un modelo de optimización bi-objetivo no lineal que buscará minimizar los costos tras aplicar estrategias de retención y reducir la brecha salarial entre el salario actual y el del mercado para minimizar la tasa de rotación. El estudio ayudará a que la gerencia pueda adoptar técnicas de retención de personal basada en los atributos que impactan más en la decisión de un empleado de renunciar voluntariamente a una empresa.Ítem Texto completo enlazado Aprendizaje automático no supervisado en segmentadores morfológicos para una lengua de escasos recursos caso de estudio: SHIWILU(Pontificia Universidad Católica del Perú, 2023-06-27) Asmat Ramirez, Evelyn Fiorella; Zapata del Río, Claudia María del Pilar; Oncevay Marcos, Felix ArturoEl Shiwilu es considerada ‘seriamente en peligro’ porque es hablada principalmente por adultos mayores de forma parcial, poco frecuente y en contextos restringidos; además, no continúa siendo transmitida a nuevas generaciones. Este tipo de lenguas necesitan pasar por un proceso de revitalización (fortalecimiento) para garantizar que no se extingan y así fomentar el interés de sus hablantes. Además, su documentación es muy escasa debido a los pocos estudios lingüísticos realizados. A fin de elevar su status, se sugiere la creación de recursos y tecnología de corte lingüístico, como corpus monolingüe y bilingüe, diccionarios, reconocimiento de categorías gramaticales, analizadores morfológicos, etc. Sin embargo, la mayoría de las lenguas existentes no se beneficia con alguno de estos recursos y/o tecnologías, y por ello son consideradas como lenguas de escasos recursos. Debido a la falta de inversión, se requiere un enfoque en el que se busquen soluciones robustas a un bajo costo a través de herramientas independientes de la lengua, modelos de desarrollo de código abierto o algoritmos de aprendizaje automático no supervisado. Bajo este contexto, se identifica como problema central el desconocimiento de un enfoque adecuado para la segmentación morfológica de una lengua de escasos recursos; y para ello, el presente proyecto propone realizar una segmentación morfológica automática no supervisada en una lengua con estas características a partir de la identificación del tipo de enfoque, monolingüe o multilingüe, que ofrece mejores resultados en esta tarea.