Tesis y Trabajos de Investigación PUCP
URI permanente para esta comunidadhttp://54.81.141.168/handle/123456789/6
El Repositorio Digital de Tesis y Trabajos de Investigación PUCP aporta al Repositorio Institucional con todos sus registros, organizados por grado: Doctorado, Maestría, Licenciatura y Bachillerato. Se actualiza permanentemente con las nuevas tesis y trabajos de investigación sustentados y autorizados, así como también con los que que fueron sustentados años atrás.
Ingresa a su web: Repositorio Digital de Tesis y Trabajos de Investigación PUCP
Explorar
2 resultados
Resultados de búsqueda
Ítem Texto completo enlazado La geometría simpléctica en la mecánica clásica(Pontificia Universidad Católica del Perú, 2024-03-05) Rosales Ventocilla, Jimmy Leonardo; Castillo Egoavil, Hernan AlfredoEste trabajo se adentra en la exploración de las aplicaciones de la geometría simpléctica en la física en el contexto de la mecánica clásica. La motivación subyacente a esta exploración radica en la comprensión de que la teoría convencional proporcionada por la literatura tradicional resulta insuficiente para analizar todas las complejidades que un sistema físico puede resentar. Por ejemplo, asegurar la existencia de trayectorias periódicas o identificar simetrías en el sistema no puede alcanzarse plenamente con los conocimientos clásicos de la mecánica. Por lo tanto, se hace imperativo incorporar los conceptos de geometría diferencial y sistemas dinámicos en el marco de la mecánica. Para alcanzar este objetivo, comenzaremos por revisar los fundamentos de la mecánica, enfocándonos inicialmente en los formalismos Lagrangiano y Hamiltoniano. A medida que desarrollemos estos conceptos esenciales, observaremos cómo emergen de manera natural los conceptos de variedades diferenciales, formas diferenciales, formas simplécticas y otros elementos relacionados con la geometría diferencial y simpléctica. Adicionalmente, profundizaremos en la teoría de invariantes, donde presentaremos y demostraremos el teorema de Noether en el contexto de la geometría diferencial. Este teorema proporcionará una comprensión más profunda para abordar los sistemas físicos desde una perspectiva geométrica. Finalmente, exploraremos cómo estas influyentes teorías matemáticas, tanto la teoría de invariantes como la geometría simpléctica, nos dotarán de herramientas más sólidas para enfrentar las complejidades de los sistemas físicos analizados en la literatura de la mecánica clásica, permitiéndonos resolverlos de manera más efectiva.Ítem Texto completo enlazado Integración en variedades(Pontificia Universidad Católica del Perú, 2020-08-26) Agapito Ruiz, Rubén ÁngelDado que el tema de tesis es "Integración en Variedades", iniciamos esta disertación con el estudio del espacio en donde nos moveremos. Para ello, con el fin de ser autocontenido y de establecer notaciones, recordamos en el Capítulo 1 algunas herramientas básicas del Cálculo Diferencial. Adicionalmente, justificamos la existencia de funciones chichón (bump functions, en inglés) sobre Ir. La utilidad de este tipo de funciones aparece en el estudio de particiones de la unidad del Capítulo 2. En este capítulo, introducimos las variedades diferenciables —junto con los conceptos de subvariedad, espacio tangente, haz tangente y campos vectoriales—, espacios topológicos que son el resultado de la abstracción del concepto de superficie en R3. La idea básica de una variedad es la introducción de objetos locales que soporten el proceso de diferenciación, para luego pegarlos compatiblemente. Ello se hace patente en cada concepto nuevo que elaboramos en este capítulo, el cual nos enseña —entre muchas cosas— a cultivar la sana costumbre de preguntarnos si está bien definido cada concepto nuevo que presentamos, es decir, si es independiente del representante local. En el Capítulo 3, desarrollamos el estudio de las formas diferenciales, elementos esenciales para el proceso de integración. Es común en este capítulo discutir primero un concepto nuevo sobre un espacio vectorial, para luego llevarlo a una variedad (vía su espacio tangente en cada punto). Es así como del estudio de las formas exteriores llegamos a las formas diferenciales; lo cual también realizamos sobre los conceptos de orientación y el elemento de volumen. Este último concepto nos lleva al estudio de las métricas Riemannianas, cuya idea intuitiva es la de proveer de un espacio vectorial con producto interno a cada punto de una variedad. Finalizamos el capítulo con la introducción de variedades con frontera, concepto necesario para establecer el Teorema de Stokes. En el Capítulo 4, analizamos la integración de formas diferenciales con soporte compacto sobre una variedad orientable, y la integración de funciones continuas, en donde se requiere adicionalmente que nuestra variedad dada sea Riemanniana. Luego de ello estudiamos el Teorema de Stokes, del cual presentamos dos versiones, una para variedades con frontera suave, por ejemplo, una superficie con frontera difeomorfa a un círculo, y la otra para variedades cuya frontera presente esquinas, por ejemplo, un cuadrado en R2 o un subconjunto abierto de R3 acotado por un poliedro. El último capítulo representa la justificación del título de la tesis, sin embargo, ello nos ha servido de excusa para adentramos a la Geometría Diferencial Moderna, ya que los capítulos anteriores representan un buen punto de partida para estudios más avanzados —en cualquier dirección— de Matemáticas y de Física Teórica.