Tesis y Trabajos de Investigación PUCP

URI permanente para esta comunidadhttp://54.81.141.168/handle/123456789/6

El Repositorio Digital de Tesis y Trabajos de Investigación PUCP aporta al Repositorio Institucional con todos sus registros, organizados por grado: Doctorado, Maestría, Licenciatura y Bachillerato. Se actualiza permanentemente con las nuevas tesis y trabajos de investigación sustentados y autorizados, así como también con los que que fueron sustentados años atrás.
Ingresa a su web: Repositorio Digital de Tesis y Trabajos de Investigación PUCP

Explorar

Resultados de búsqueda

Mostrando 1 - 1 de 1
  • Ítem
    Microscopio automatizado: conteo de bacilos de tuberculosis
    (Pontificia Universidad Católica del Perú, 2013-11-07) Sato Yamada, Juan José; Castañeda Aphan, Benjamín
    La prueba baciloscópica de la tuberculosis es la forma de diagnóstico microscópico más utilizado para combatir la enfermedad en los países pobres o subdesarrollados debido a su bajo costo y rapidez. Sin embargo, la realización de esta prueba es un proceso tedioso, extenuante y requiere de un especialista debidamente capacitado. Por ello, en el presente trabajo se presenta un algoritmo automatizado para la detección y conteo de bacilos de tuberculosis presentes en imágenes de muestras de esputo mediante la utilización de técnicas de procesamiento de imágenes digitales. Se analizaron diferentes espacios de color para hallar aquella capa o canal de color que posea un mayor contraste entre las intensidades de color de los píxeles de los bacilos y del fondo. Para esto se hizo un análisis de los histogramas mediante las gráficas de las características operativas del receptor. Para la segmentación de los bacilos, el presente trabajo desarrolló una técnica de umbralización adaptativa utilizando el método de Otsu para hallar el óptimo valor umbral. Luego, los objetos detectados son clasificados como bacilos o no-bacilos mediante un árbol de clasificación utilizando características de área y excentricidad. El algoritmo desarrollado presenta niveles de sensibilidad, especificidad y exactitud mayores a 90% y tiene un tiempo de ejecución de aproximadamente 9 segundos por campo (15 minutos para 100 campos). Cabe resaltar que, a diferencia de investigaciones previas, la presente tesis buscó desarrollar un algoritmo tanto de segmentación de los bacilos, como de su clasificación, e implementarlo en un microscopio automatizado para el diagnóstico automático de la enfermedad en tiempo real. Con esta finalidad, se implementó el algoritmo desarrollado con el programa Matlab® en un lenguaje de programación C++, obteniendo un programa capaz de interactuar con otros programas como el del control de la cámara digital. Se espera que este trabajo sirva de base para próximos estudios orientados a automatizar el proceso de diagnóstico de la enfermedad de una manera más óptima y veloz.