Tesis y Trabajos de Investigación PUCP

URI permanente para esta comunidadhttp://54.81.141.168/handle/123456789/6

El Repositorio Digital de Tesis y Trabajos de Investigación PUCP aporta al Repositorio Institucional con todos sus registros, organizados por grado: Doctorado, Maestría, Licenciatura y Bachillerato. Se actualiza permanentemente con las nuevas tesis y trabajos de investigación sustentados y autorizados, así como también con los que que fueron sustentados años atrás.
Ingresa a su web: Repositorio Digital de Tesis y Trabajos de Investigación PUCP

Explorar

Resultados de búsqueda

Mostrando 1 - 2 de 2
  • Ítem
    Separable dictionary learning for convolutional sparse coding via split updates
    (Pontificia Universidad Católica del Perú, 2019-05-16) Quesada Pacora, Jorge Gerardo; Rodriguez Valderrama, Paul Antonio
    The increasing ubiquity of Convolutional Sparse Representation techniques for several image processing tasks (such as object recognition and classification, as well as image denoising) has recently sparked interest in the use of separable 2D dictionary filter banks (as alternatives to standard nonseparable dictionaries) for efficient Convolutional Sparse Coding (CSC) implementations. However, existing methods approximate a set of K non-separable filters via a linear combination of R (R << K) separable filters, which puts an upper bound on the latter’s quality. Furthermore, this implies the need to learn first the whole set of non-separable filters, and only then compute the separable set, which is not optimal from a computational perspective. In this context, the purpose of the present work is to propose a method to directly learn a set of K separable dictionary filters from a given image training set by drawing ideas from standard Convolutional Dictionary Learning (CDL) methods. We show that the separable filters obtained by the proposed method match the performance of an equivalent number of non-separable filters. Furthermore, the computational performance of this learning method is shown to be substantially faster than a state-of-the-art non-separable CDL method when either the image training set or the filter set are large. The method and results presented here have been published [1] at the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2018). Furthermore, a preliminary approach (mentioned at the end of Chapter 2) was also published at ICASSP 2017 [2]. The structure of the document is organized as follows. Chapter 1 introduces the problem of interest and outlines the scope of this work. Chapter 2 provides the reader with a brief summary of the relevant literature in optimization, CDL and previous use of separable filters. Chapter 3 presents the details of the proposed method and some implementation highlights. Chapter 4 reports the attained computational results through several simulations. Chapter 5 summarizes the attained results and draws some final conclusions.
  • Ítem
    Algoritmo de estimación del número de elementos móviles en videos digitales orientado a la gestión del tráfico vehicular
    (Pontificia Universidad Católica del Perú, 2015-11-28) Quesada Pacora, Jorge Gerardo; Rodríguez Valderrama, Paúl Antonio
    La gestión automatizada del tránsito es un campo de investigación que integra una variedad de tecnologías y se orienta principalmente a mejorar el flujo vehicular, haciendo uso de cámaras y otros sensores para recabar información sobre el estado del tráfico. En este contexto, las técnicas de procesamiento de imágenes digitales permiten realizar diversos análisis del entorno urbano, tales como detección, conteo y seguimiento de peatones y vehículos. Entre las capacidades que requieren los sistemas que realizan dicha gestión, la estimación del número de vehículos en circulación es una de las principales. Para obtener una estimación adecuada del número de elementos móviles en un vídeo, primero debe realizarse una adecuada segmentación de dichos elementos. Existe una gran variedad de métodos que realizan dicha segmentación, sin embargo PCP (Principal Component Pursuit) es considerado el estado del arte para el modelado de fondo de vídeos digitales en donde el sensor (cámara) es estático. El objetivo de la presente tesis es el diseño de un algoritmo que estime el número de vehículos presentes en un vídeo digital de tránsito, que tenga como etapa de pre-procesamiento la segmentación de movimiento mediante PCP (utilizando una librería independiente) y funcione de manera semiautomática. Se busca también proponer una estrategia adecuada para dividir las etapas del algoritmo, de modo que ´este pueda ser descrito como un conjunto flexible de bloques, implementable en cualquier plataforma o entorno. El método propuesto se divide en dos bloques principales: entrenamiento (supervisado) y conteo (automático). Ambos bloques realizan la extracción del movimiento mediante PCP. El primer bloque genera los parámetros necesarios para el conteo mediante un análisis de las dimensiones de los objetos móviles. El segundo realiza el conteo mediante el uso de los parámetros proporcionados por la etapa de entrenamiento. Para evaluar el rendimiento del algoritmo, este ser´a implementado en el entorno de programación Matlab, y se generar´a una base de datos propia. Dicho rendimiento será evaluado en dos dimensiones: el número instantáneo de vehículos en escena y el número de vehículos que atraviesan una “puerta virtual” en un tiempo determinado. En el primer capítulo de la tesis se define puntualmente el problema que se busca resolver. En el segundo capítulo se revisan los métodos y algoritmos más populares para segmentar el movimiento, haciendo especial énfasis en PCP. Las consideraciones de diseño y los detalles del algoritmo se especifican en el capítulo tres. Finalmente, se presentan los resultados obtenidos en el capítulo cuatro, seguido de las conclusiones y recomendaciones al respecto.