Tesis y Trabajos de Investigación PUCP

URI permanente para esta comunidadhttp://54.81.141.168/handle/123456789/6

El Repositorio Digital de Tesis y Trabajos de Investigación PUCP aporta al Repositorio Institucional con todos sus registros, organizados por grado: Doctorado, Maestría, Licenciatura y Bachillerato. Se actualiza permanentemente con las nuevas tesis y trabajos de investigación sustentados y autorizados, así como también con los que que fueron sustentados años atrás.
Ingresa a su web: Repositorio Digital de Tesis y Trabajos de Investigación PUCP

Explorar

Resultados de búsqueda

Mostrando 1 - 1 de 1
  • Ítem
    Análisis de estabilidad de sistemas lineales singulares con saltos markovianos con probabilidades de transición parcialmente conocidas
    (Pontificia Universidad Católica del Perú, 2021-11-16) Guerrero Abrill, Jorge Christian; Chávez Fuentes, Jorge Richard
    In this work sufficient conditions for stochastic stability of Markov jump linear singular systems (MJLSS) with partially known transition probabilities are presented. The conditions introduced are based on linear matrix inequalities (LMIs) which can be solved by a numerical computing software. In the MJLSS that is part of this study, the parameters of the matrices of the left and right side of the state equation of the system are not governed by the same Markov state. Therefore, this system is different compared with other MJLSS presented in most of the literature. In order to develop new stability conditions, first, the existence and uniqueness of solution of an MJLSS is addressed. Subsequently, it is introduced a new stability condition for MJLSS with known transition probabilities based on LMIs and the dynamics decomposition form. Two new stability conditions for MJLSS with partially known transition probabilities are presented, one is based on the dynamics decomposition form and the other one is based on the Weierstrass decomposition form. Finally, the relationship between these two approaches is shown. Examples are provided in order to validate the proposed stability conditions.