Tesis y Trabajos de Investigación PUCP

URI permanente para esta comunidadhttp://54.81.141.168/handle/123456789/6

El Repositorio Digital de Tesis y Trabajos de Investigación PUCP aporta al Repositorio Institucional con todos sus registros, organizados por grado: Doctorado, Maestría, Licenciatura y Bachillerato. Se actualiza permanentemente con las nuevas tesis y trabajos de investigación sustentados y autorizados, así como también con los que que fueron sustentados años atrás.
Ingresa a su web: Repositorio Digital de Tesis y Trabajos de Investigación PUCP

Explorar

Resultados de búsqueda

Mostrando 1 - 1 de 1
  • Ítem
    Estructuras métricas de contacto y polinomios de Brieskorn-Pham
    (Pontificia Universidad Católica del Perú, 2016-11-15) Ballón Bordo, Álvaro José; Cuadros Valle, Jaime
    Esta tesis presenta una visión global y prácticamente autocontenida de los avances que se llevaron a cabo en la décadas de los años 1960 y 1970 con respecto al estudio de las estructuras de contacto en variedades diferenciables. Nuestro objetivo principal sería exhibir explícitamente estructuras métricas de contacto en las denominadas variedades de Brieskorn, que surgen como el conjunto de ceros de los llamados polinomios de Brieskorn-Pham intersecado con la esfera unitaria. Para ello comenzaremos desarrollando a grandes rasgos los conceptos relacionados a la geometría simpléctica, la geometría compleja y las variedades de Kähler. Luego realizaremos un esbozo de prueba del teorema de Boothby-Wang, que constituye una generalización de la fibración de Hopf. A continuación presentaremos la construcción de estructuras métricas de contacto, en particular, las denominadas estructuras de Sasaki. El objetivo de ello es obtener estructuras de Sasaki en las variedades de Brieskorn, las cuales exhibiremos en coordenadas a fin de obtener un procedimiento para construirlas en una variedad de Brieskorn arbitraria. Por último, relacionaremos lo estudiado con la fibración de Boothby-Wang para probar que las estructuras construidas pueden ser proyectadas como hipersuperficies en el espacio proyectivo complejo. Debido a la naturaleza de las nociones presentadas, se espera que el lector tenga un conocimiento elemental de la geometría riemanniana.