Tesis y Trabajos de Investigación PUCP

URI permanente para esta comunidadhttp://54.81.141.168/handle/123456789/6

El Repositorio Digital de Tesis y Trabajos de Investigación PUCP aporta al Repositorio Institucional con todos sus registros, organizados por grado: Doctorado, Maestría, Licenciatura y Bachillerato. Se actualiza permanentemente con las nuevas tesis y trabajos de investigación sustentados y autorizados, así como también con los que que fueron sustentados años atrás.
Ingresa a su web: Repositorio Digital de Tesis y Trabajos de Investigación PUCP

Explorar

Resultados de búsqueda

Mostrando 1 - 2 de 2
  • Ítem
    Evaluación y comparación del desempeño sísmico de cuatro tramos de estructura de la línea 1 del metro de Lima diseñados en épocas diferentes
    (Pontificia Universidad Católica del Perú, 2017-02-10) Vargas Roca, José Oscar; Arias Ricse, Julio César; Fernández Dávila Gonzales, Victor Iván
    En el capítulo 1 se describen los daños producidos en estructuras elevadas tipo puentes o viaductos después de sismos de gran magnitud, tales como: Loma Prieta (1989), Northridge (1994), Kobe (1995) y Chile (2010). La descripción se concentra en el colapso de los viaductos Cypress y Hanshin en California (USA) y Kobe (Japón), respectivamente. Por esta razón y en vista que los procedimientos de diseño tradicionales basados en análisis lineales elásticos han demostrado que no garantizan la total seguridad de las estructuras se presenta el siguiente trabajo de tesis. El objetivo central es contribuir con el conocimiento de la capacidad sísmica de cuatro tramos representativos del Tramo 1 de la Línea 1 del Metro de Lima diseñados en épocas diferentes (2 estaciones y 2 módulos típicos diseñados a mediados de los años 80’s y 2010), con la aplicación del Diseño por Capacidad y el Análisis Sísmico Basado en Desempeño. Se presenta un ejemplo de aplicación de esta metodología en el diseño estructural del Puente Chilina en Arequipa, Perú para demostrar que su aplicación está siendo cada vez más difundida. En el capítulo 2 se presentan las estructuras de análisis y se explican los criterios para su selección, principalmente como función de su carga tributaria, su rigidez lateral, las condiciones geotécnicas del suelo de cimentación y su importancia. Asimismo, se detallan los tipos de análisis sísmico para el cálculo de la Demanda y Capacidad de Desplazamiento Lateral dentro del contexto del Análisis Sísmico Basado en Desempeño. El reglamento de referencia para la evaluación del desempeño sísmico de las estructuras es AASHTO, 2009, “Guide Specifications for LRFD Seismic Bridge Design”. Este reglamento tiene validez en el Perú y constituye una versión más exigente que la utilizada para el diseño estructural de los tramos de mediados de los años 80’s. Se detallan y explican los requerimientos del reglamento indicado para la aplicación del Diseño por Capacidad y para la verificación de la ocurrencia de los mecanismos de falla que son materia de investigación del presente trabajo. Asimismo, se presentan los requerimientos normativos para la verificación del Desempeño Sísmico por Desplazamientos Laterales. Cuando se necesitan requerimientos adicionales, no indicados en el reglamento de referencia, se consideran las recomendaciones de otros reglamentos, los cuales son indicados oportunamente. En el capítulo 3 se evaluó el impacto de algunas propiedades relevantes que pueden influir en los resultados, tales como: modelos de Longitud de Rótula Plástica, Inercia Efectiva en los pilares, interacción suelo-estructura (a través de la flexibilidad del suelo y de la cimentación), y los efectos de Segundo Orden P–Δ. Se explica en detalle los elementos estructurales y los criterios de modelación de las estructuras en el programa computacional SAP 2000 Nonlinear Versión 14 del cual la Pontificia Universidad Católica del Perú tiene licencia de uso. Para el cálculo de la Demanda Sísmica, las estructuras fueron sometidas a Espectros de Respuesta de Pseudo-Aceleraciones con períodos de retorno de 100 y 1000 años que corresponden a los escenarios de Nivel Sísmico de Operación y de Contingencia o Diseño, respectivamente. La Capacidad Sísmica de los elementos estructurales que componen el viaducto elevado fue medida en función a la Curva de Capacidad de Desplazamiento Lateral y restringida a varios Niveles de Desempeño según el daño esperado en cada uno de ellos. Así, se distinguen los Niveles de Desempeño de Fluencia (B), Inmediatamente Operacional (IO), Resguardo de la Vida (LS), Prevención al Colapso (CP) y Colapso (C). La Curva de Capacidad fue obtenida a partir del Análisis Estático No Lineal “Pushover”, que es el análisis asociado a la importancia y Categoría de Diseño Sísmico de las estructuras. Se presentan las Respuestas de Interés Globales y Locales para ambas direcciones de análisis. El análisis de las Respuestas Locales incluyó la verificación por corte de los pilares y la inestabilidad de la cimentación por volteo y presiones ante carga sísmica para los elementos de los ejes más demandados. La Respuesta Global de las estructuras fue asociada a su Curva de Capacidad de Desplazamiento Lateral en la cual se verificó los requerimientos normativos. Es importante garantizar que para que se produzca el mecanismo de falla por fluencia en flexión en las regiones de rotulas plásticas no se debe producir algún otro mecanismo de falla, tales como los indicados en el párrafo anterior (falla por corte de los pilares o falla por inestabilidad de la cimentación).En el capítulo 4 se discuten los resultados obtenidos de las estructuras en su estado actual a la luz de la reglamentación vigente. Se analizó una posible propuesta de reforzamiento para garantizar la ocurrencia del mecanismo de falla por fluencia en flexión que es el propósito de este trabajo y se comparó el comportamiento sísmico entre estructuras similares. Es decir, se presenta una comparación entre las estructuras con pilares bi-columna (estaciones) y otra comparación entre las estructuras con pilares mono-columna (módulos típicos) para cuantificar el cambio en los requerimientos entre dos diseños de épocas diferentes. En el capítulo 5 las estructuras en su estado actual fueron calificadas sísmicamente como competentes o no a partir de la razón Demanda/Capacidad de Desplazamiento Lateral y a partir de la posible ocurrencia de los mecanismos de falla frágiles indicados. En las estructuras en las cuales no fue aplicable esta verificación (principalmente, y como hipótesis de partida, en las estructuras diseñadas a mediados de los años 80’s) se indica el mecanismo de falla probable sobre la base de los resultados obtenidos. Finalmente, a modo de recomendación y con validez numérica, se muestra una propuesta de reforzamiento para garantizar la competencia de las estructuras que presentan deficiencias. Además, se indican las Líneas de Investigación a futuro.
  • Ítem
    Análisis y diseño de estructuras con aisladores sísmicos en el Perú
    (Pontificia Universidad Católica del Perú, 2012-12-04) Korswagen Eguren, Paul Alexander; Arias Ricse, Julio César; Huaringa Huamaní, Pamela Grace; Montalbetti Solari, Juan Antonio
    La aislación de edificaciones consiste en colocar una interfase flexible entre el suelo y la estructura de forma que se reduzcan considerablemente las solicitaciones sísmicas a las que ésta estaría sometida. Así, se puede optar por un diseño con un factor de reducción de fuerza sísmica menor y se puede obtener como resultado una edificación que no sufrirá daños y permanecerá totalmente operativa durante y después de un evento sísmico. Las reducidas aceleraciones también protegen a los elementos no estructurales y a los contenidos de la edificación. Los aisladores son dispositivos que cuentan con una elevada rigidez a cargas verticales, pero son flexibles frente a solicitaciones laterales. Por consiguiente, las fuerzas transmitidas a la estructura por un sismo severo generan desplazamientos del orden de 25 centímetros en la interfase de aislación, pero derivas significativamente menores en la superestructura. Esta tesis se enfoca en el uso de aisladores elastoméricos, los cuales aprovechan la flexibilidad de un material similar al caucho para conseguir una baja rigidez lateral, pero lo combinan con planchas de acero para elevar la rigidez vertical. Al realizar un análisis del comportamiento de diferentes tipos de estructuras con aisladores, se comprobó que ciertas estructuras se benefician de la aislación más que otras, siendo la esbeltez y el periodo de vibración los factores más influyentes. Como ventaja adicional a la reducción de las fuerzas, se ha encontrado, por ejemplo, que la aislación concentra la participación modal a sólo un modo por cada dirección, reduciendo así, la incertidumbre del comportamiento sísmico. Luego, se seleccionó una de las estructuras analizadas y se diseñó con el fin de observar las ventajas en el comportamiento estructural y diferencias en los costos. Se observó que el uso de concreto y acero en la superestructura disminuye, pero aumenta en la cimentación. En términos de costo, no se estima una reducción importante, sino un incremento debido a los aisladores. No obstante, deben cuantificarse los costos indirectos como las pólizas de seguros y el costo de cese de operación de una estructura esencial durante una emergencia como ventajas económicas. Finalmente, se incluye un detalle del procedimiento y recomendaciones para el diseño.