Tesis y Trabajos de Investigación PUCP

URI permanente para esta comunidadhttp://54.81.141.168/handle/123456789/6

El Repositorio Digital de Tesis y Trabajos de Investigación PUCP aporta al Repositorio Institucional con todos sus registros, organizados por grado: Doctorado, Maestría, Licenciatura y Bachillerato. Se actualiza permanentemente con las nuevas tesis y trabajos de investigación sustentados y autorizados, así como también con los que que fueron sustentados años atrás.
Ingresa a su web: Repositorio Digital de Tesis y Trabajos de Investigación PUCP

Explorar

Resultados de búsqueda

Mostrando 1 - 2 de 2
  • Ítem
    Sobre la construcción de ensambles de clasificadores diversos en tanto que variación normalizada de información y su vínculo con su precisión
    (Pontificia Universidad Católica del Perú, 2021-11-07) Guinea Ordóñez, Rodrigo José; Villanueva Talavera, Edwin Rafael
    La hipótesis en cuestión afirma que, dado el contexto teórico (i.e., definiciones matemáticas consideradas apropiadas para describir los fenómenos que se pretende estudiar) descrito en el artículo, existe una relación entre diversidad global y precisión de un ensamble de clasificadores. Por lo tanto, el propósito de esta investigación es estudiar la relación entre la precisión de ensambles y su diversidad dentro de un contexto geométrico y de información. Para lograrlo, interpretamos el problema como uno geométrico introduciendo un espacio métrico, donde los puntos son predicciones de clasificadores; la función de distancia, la métrica Variación de Información Normalizada (NVI, por sus siglas en inglés); y la construcción de un ensamble diverso es reducida a un problema de criba y novedosamente transformado a uno de programación cuadrática. La significancia estadística es asegurada haciendo uso de métodos Monte Carlo sobre 53 conjuntos de datos apropiados. El resultado es un algoritmo basado en una métrica usada en el contexto de teoría de la información, ideal para estudiar conjuntos de datos de alta dimensionalidad e inherentemente ruidosos. Por tanto, es relevante cuando el costo de adquirir muestras es muy alto; y la cantidad de variables, enorme. El marco teórico incluye las definiciones (e.g., definiciones relacionadas al concepto de diversidad o al espacio métrico utilizado), los teoremas (e.g., propiedades de espacios métricos) y algoritmos base (i.e., programación cuadrática) usados para conseguir los resultados. Los resultados muestran que, en promedio, el exceso de precisión de un ensemble diverso respecto de su contraparte aleatoria es función del valor de la diversidad global del mismo. Esto confirma la hipótesis inicial. Además, la metodología introducida para modelar el algoritmo introduce un marco que permite esclarecer la relación entre diversidad y precisión, ya que la representa en términos geométricos.
  • Ítem
    Aplicación de aprendizaje profundo para la detección y clasificación automática de insectos agrícolas en trampas pegantes: una revisión de literatura
    (Pontificia Universidad Católica del Perú, 2021-02-02) Córdova Pérez, Claudia Sofía; Villanueva Talavera, Edwin Rafael
    El presente trabajo de investigación busca hacer una revisión sistemática sobre las técnicas actuales que se usan para solucionar problemas de identificación y clasificación de plagas de insectos, los cuales pueden ser para detectar uno o más tipos de insectos. Dentro de esta revisión, se encontró soluciones como algoritmos de segmentación con cambio de espacio de color, lo cual permite remover el fondo de una imagen y centrarse únicamente en el objeto de interés; también, el uso de modelos de detección, por ejemplo YOLO y Faster R-CNN, los cuales están conformados por redes neuronales convolucionales para lograr la identificación de insectos plaga; además, se encontraron soluciones que hacían uso de SLIC (Simple Linear Iterative Clustering), así como el uso de un análisis multifractal. Un aspecto relevante a tomar en cuenta para saber qué tan eficientes están siendo estas soluciones son las métricas de evaluación con sus respectivos valores obtenidos; sin embargo, estos resultados solo pueden ser comparables si se usa el mismo dataset para entrenamiento y validación. Por consiguiente y dado que la mayoría de estudios recopilados usa un conjunto de datos propio, los resultados mostrados nos sirven para tener una idea de la eficacia de sus soluciones, mas no para comparar los valores de las métricas de evaluación de los distintos aproximamientos tomados en cada estudio revisado. Finalmente, el único insecto plaga que afecta los campos de hortalizas en el Perú y fue encontrado dentro de los estudios fue la mosca blanca. Los demás estudios abordan el problema de detección con otros tipos de insectos, los cuales no son relevantes para el problema de plagas en Perú, sin embargo, sus soluciones son consideradas pues el cambio que se tendría que hacer es en el conjunto de datos que alimenta a las soluciones presentadas en los estudios encontrados.