Tesis y Trabajos de Investigación PUCP
URI permanente para esta comunidadhttp://54.81.141.168/handle/123456789/6
El Repositorio Digital de Tesis y Trabajos de Investigación PUCP aporta al Repositorio Institucional con todos sus registros, organizados por grado: Doctorado, Maestría, Licenciatura y Bachillerato. Se actualiza permanentemente con las nuevas tesis y trabajos de investigación sustentados y autorizados, así como también con los que que fueron sustentados años atrás.
Ingresa a su web: Repositorio Digital de Tesis y Trabajos de Investigación PUCP
Explorar
3 resultados
Resultados de búsqueda
Ítem Texto completo enlazado Técnicas de representación y reconstrucción de objetos 3D en el computador: una revisión de literatura(Pontificia Universidad Católica del Perú, 2021-02-18) Sumoso Vicuña, Ernie Ludwick; Sipiran Mendoza, Iván AnselmoActualmente en el mundo, las tecnologías de escaneo 3D se clasifican en dos grupos: de contacto y sin contacto. El primer grupo se caracteriza por la necesidad de reposar el escáner sobre el objeto (Sreenivasa K. 2003). Este tipo de escáneres representan un riesgo cuando los objetos en cuestión no pueden ser manipulados libremente debido a su fragilidad. Por otro lado, el segundo grupo de tecnologías son mayormente usadas en investigaciones y poseen una amplia variedad de aplicaciones en la industria medicinal y de entretenimiento. Este último grupo a su vez se divide en dos sub-grupos: activos y pasivos (Pears N. 2012). Las tecnologías de escaneo 3D activos se basan en el análisis y medición del tiempo de envío y retorno de una señal hacia el objeto para estimar la posición de la superficie. Por otro lado, las técnicas de escaneo sin contacto-pasivas no necesitan de la manipulación del objeto ni medición de señales ya que aprovechan la luz ambiental. Dentro de las ciencias de la computación existe el problema de cómo sintetizar, procesar y analizar la información de una superficie obtenida mediante herramientas de escaneo 3D y guardarla en el computador con el fin de que este pueda ser visualizada y/o manipulada por otras herramientas informáticas. A lo largo de los años han surgido múltiples técnicas de representación de objetos en un espacio de tres dimensiones. Sin embargo, estas técnicas dependen fuertemente de las herramientas empleadas durante el proceso de escaneo. Es por ello que se han desarrollado también técnicas pasivas-sin contacto que permitan la obtención de superficies únicamente a partir de una colección de imágenes y haciendo uso de redes neuronales entrenadas en extensos conjuntos de datos. Para poder entender estas tecnologías emergentes es necesario investigar a profundidad cuales son los recientes métodos para generar superficies u objetos 3D, en qué casos se utilizan los distintos métodos y cuáles son los enfoques de los autores al emplear dichas técnicas.Ítem Texto completo enlazado Diseño de una arquitectura de aprendizaje automático que brinde soporte para la detección de mentiras mediante el análisis de video(Pontificia Universidad Católica del Perú, 2019-07-30) Salas Guillén, Diego Andrés; Sipiran Mendoza, Iván AnselmoLa justicia y la búsqueda de la verdad en la investigación criminal requiere del uso de una herramienta fundamental para su éxito, el interrogatorio. En un interrogatorio, un experto hace uso de su experiencia y su juicio para, mediante el cuestionamiento del acusado, obtener una verdad explícita o implícita de parte de este sobre el hecho a investigar. El presente proyecto de investigación apunta a diseñar un modelo de aprendizaje automático que brinde soporte para la detección de mentiras en interrogatorios mediante el análisis de video. Es una contribución a los trabajos de investigación realizados por el grupo IA-PUCP (Grupo de Investigación en Inteligencia Artificial) de la Pontificia Universidad Católica del Perú. Se utilizó un conjunto de datos puesto a disponibilidad por Rada Mihalcea del grupo “Language and Information Technologies” de la Universidad de Michigan. La propuesta de arquitectura para el modelo consiste en una capa de preprocesamiento de datos que utiliza un algoritmo de reconocimiento facial para extraer los rostros del video, limitando el espacio de características. Luego, se utiliza una red convolucional preentrenada para realizar la extracción de características. Finalmente, se utiliza una red recurrente LSTM para procesar las características y luego una red neuronal para clasificar los videos. Se experimentó con cinco redes convolucionales (Resnet, InceptionV3, Xception, VGG16 y VGG19), el mejor fue InceptionV3. Este obtuvo una exactitud de 78.6 %, valor que supera varios de los resultados obtenidos por los modelos, presentados en la publicación “A Multi-View Learning Approach to Deception Detection” de N. Carissimi, que no aplicaron entrenamiento en la extracción convolucional. Esto, utilizando menos información y automatizando la extracción de la misma.Ítem Texto completo enlazado 3D Reconstruction of Incomplete Archaeological Objects Using a Generative Adversarial Network(Pontificia Universidad Católica del Perú, 2018-07-09) Hermoza Aragonés, Renato; Sipiran Mendoza, Iván AnselmoWe introduce a data-driven approach to aid the repairing and conservation of archaeological objects: ORGAN, an object reconstruction generative adversarial network (GAN). By using an encoder-decoder 3D deep neural network on a GAN architecture, and combining two loss objectives: a completion loss and an Improved Wasserstein GAN loss, we can train a network to effectively predict the missing geometry of damaged objects. As archaeological objects can greatly differ between them, the network is conditioned on a variable, which can be a culture, a region or any metadata of the object. In our results, we show that our method can recover most of the information from damaged objects, even in cases where more than half of the voxels are missing, without producing many errors.