Tesis y Trabajos de Investigación PUCP

URI permanente para esta comunidadhttp://54.81.141.168/handle/123456789/6

El Repositorio Digital de Tesis y Trabajos de Investigación PUCP aporta al Repositorio Institucional con todos sus registros, organizados por grado: Doctorado, Maestría, Licenciatura y Bachillerato. Se actualiza permanentemente con las nuevas tesis y trabajos de investigación sustentados y autorizados, así como también con los que que fueron sustentados años atrás.
Ingresa a su web: Repositorio Digital de Tesis y Trabajos de Investigación PUCP

Explorar

Resultados de búsqueda

Mostrando 1 - 1 de 1
  • Ítem
    Approximate bayesian inference for directed acyclic graph autoregressive models
    (Pontificia Universidad Católica del Perú, 2022-02-02) Buendía Narváez, Julio César; Quiroz Cornejo, Zaida Jesús
    La prevalencia de enfermedades epidemiológicas recolectadas en áreas geográficamente limitadas, como distritos o provincias, son cruciales para la toma de decisiones en salud pública. Usualmente esta variable respuesta presenta dependencia espacial, es decir, es similar en áreas vecinas, debido a la naturaleza de la enfermedad, clima, nivel económico y cultural, entre otras razones. En este sentido, se proponen modelos espaciales de datos áreas para identificar tendencias y factores asociados a enfermedades epidemiológicas, tomando en cuenta la dependencia espacial entre áreas geográficas. Por lo general, estos modelos ajustan a la dependencia espacial a través de efectos aleatorios derivados a través de grafos. En particular, el modelo autorregresivo de gráfico acíclico dirigido (DAGAR) se basa en un grafo acíclico dirigido y algunos efectos aleatorios \del pasado". Como consecuencia, la matriz de precisión (inversa de la covarianza) del modelo es dispersa. Este modelo tiene una interpretación intuitiva de los parámetros asociados con la dependencia espacial y se puede representar como un modelo gaussiano latente. En este contexto, en esta tesis se propone implementar el modelo DAGAR a través del método de inferencia bayesiano aproximado INLA que es determinista, bastante preciso y eficiente. Dentro de este enfoque, la estimación de datos grandes se puede realizar en segundos o minutos, y permite ajustar los datos con distribución gaussiana o no gaussiana. Finalmente, para mostrar el aporte de esta propuesta, el modelo DAGAR se ajusta a datos reales.