Tesis y Trabajos de Investigación PUCP

URI permanente para esta comunidadhttp://54.81.141.168/handle/123456789/6

El Repositorio Digital de Tesis y Trabajos de Investigación PUCP aporta al Repositorio Institucional con todos sus registros, organizados por grado: Doctorado, Maestría, Licenciatura y Bachillerato. Se actualiza permanentemente con las nuevas tesis y trabajos de investigación sustentados y autorizados, así como también con los que que fueron sustentados años atrás.
Ingresa a su web: Repositorio Digital de Tesis y Trabajos de Investigación PUCP

Explorar

Resultados de búsqueda

Mostrando 1 - 2 de 2
  • Ítem
    Approximating roots of polynomials
    (Pontificia Universidad Católica del Perú, 2021-11-27) Torres Romero, Jesús Stefano; Poirier Schmitz, Alfredo Bernardo
    This work consists of applying methods of dynamical systems in complex variables to an applied problem: nding the roots of an arbitrary polynomial. Speci cally, we use the iteration z 7! z2 + c to nd the roots of a complex polynomial p(z). By applying that iteration we can use concepts of complex analysis and linear algebra, such as the Mandelbrot set and the Vandermonde matrix to tackle our problem. We see how these ideas have applications in other contexts, such as number theory. We add the discussion of pseudo code and code written in Python 3, for the sake of doing experiments that illustrate the di erent sections of this thesis. This discussion let us analyse the computational complexity of the algorithm on top of the mathematical discussion.
  • Ítem
    Comportamiento dinámico de la composición de polinomios de la forma zd + cn
    (Pontificia Universidad Católica del Perú, 2020-12-02) Sánchez Chambergo, Samir Luisenrrique; Poirier Schmitz, Alfredo Bernardo
    En esta tesis estudiamos sucesiones de polinomios que se encuentran en P = {(fn) : fn(z) = zd + cn; con (cn) sucesión en C} Dada una secuencia (fn) Є P, escribimos Fn para denotar la composición fn O∙∙∙Of1. Clasificamos las sucesiones de polinomios (fn) según el comportamiento asintótico de (Fn) y caracterizamos dicha clasificación dependiendo del comportamiento de la sucesión (cn). Generalizamos los resultados obtenidos por Büger y Brück [4] y realizamos una comparación entre la teoría clásica de iteraciones y nuestro enfoque. Buscamos cuales de estos resultados importantes se preservan para cualquier tipo de secuencia (fn) y en otros casos formulamos condiciones necesarias para que estos resultados se mantengan.