Tesis y Trabajos de Investigación PUCP
URI permanente para esta comunidadhttp://54.81.141.168/handle/123456789/6
El Repositorio Digital de Tesis y Trabajos de Investigación PUCP aporta al Repositorio Institucional con todos sus registros, organizados por grado: Doctorado, Maestría, Licenciatura y Bachillerato. Se actualiza permanentemente con las nuevas tesis y trabajos de investigación sustentados y autorizados, así como también con los que que fueron sustentados años atrás.
Ingresa a su web: Repositorio Digital de Tesis y Trabajos de Investigación PUCP
Explorar
6 resultados
Resultados de búsqueda
Ítem Texto completo enlazado Diseño e implementación de un sistema de monitoreo de parámetros eléctricos para la evaluación del rendimiento energético de sistemas fotovoltaicos conectados a red(Pontificia Universidad Católica del Perú, 2023-11-10) Zamudio Piscoya, Martin Alcides; Cataño Sánchez, Miguel Ángel; Palomino Töfflinger, Jan AmaruLos sistemas de monitoreo son una forma de evaluar el estado de las variables que resultan de interés para realizar luego un análisis o estudio correspondiente. En ese sentido, la monitorización de sistemas fotovoltaicos (FV) se ha convertido en un proceso necesario para asegurar el correcto funcionamiento de estos sistemas. Para ello, se utilizan sistemas de adquisición de datos (DAQ), los cuales permiten adquirir variables de interés. Así, resulta útil conocer tanto los parámetros eléctricos como meteorológicos que en conjunto permiten analizar el desempeño de sistemas fotovoltaicos. Como trabajo previo, se han realizado instalaciones fotovoltaicas en distintas regiones del Perú y, junto con ellas, se han instalado sistemas de monitoreo que adquieren parámetros meteorológicos de primer orden (irradiancia y temperatura del módulo FV) que afectan a la productividad de los sistemas fotovoltaicos conectados a red (SFCR). Los datos obtenidos de los DAQ son importantes para analizar el comportamiento energético de los sistemas fotovoltaicos y las anomalías que puedan generarse. Asimismo, para que estos sistemas se puedan analizar y caracterizar de manera completa, es necesario monitorizar también las variables eléctricas tanto en corriente continua (DC) como en alterna (AC). La presente tesis propone el diseño y la implementación de un sistema que adquiera parámetros eléctricos en DC y AC, y que cumpla con el estándar IEC 61724-1:2021, el cual provee requerimientos para el monitoreo y diseño de SFCR. Se tiene proyectado que el sistema opere en los diferentes climas de cinco regiones del Perú (Lima, Arequipa, Tacna, Puno y Amazonas) en conjunto con el sistema de adquisición de parámetros meteorológicos desarrollado en un trabajo previo. Los datos del nuevo sistema se monitorearán de manera continua en tiempo real y las variables serán registradas tanto de manera local en un computador así como en una plataforma en la nube que cumple con el concepto de Internet de las Cosas (IoT). El objetivo deseado es que el sistema mida correctamente de acuerdo con la normativa seguida para que pueda ser empleado en el monitoreo de diferentes sistemas fotovoltaicos conectados a red.Ítem Texto completo enlazado Contribution to the characterization and modeling of photovoltaic generators(Pontificia Universidad Católica del Perú, 2023-01-10) Angulo Abanto, Jose Ruben; Palomino Töfflinger, Jan AmaruA crucial aspect of evaluating and maintaining a photovoltaic (PV) installation connected to the grid is the availability of models that describe its operation reliably in real operating conditions. The nominal power of the PV generator (P*M) is considered an essential input parameter, and several models have been proposed to estimate P*M for characterizing the PV system. In the case of PV generators in outdoor conditions, the American Society for Testing and Materials, the International Electrotechnical Commission, and others have proposed procedures to determine the P*M of the generator. As part of these procedures, monitoring days with ideal conditions is mandatory, notably days with a clear sky, high irradiance values, and low wind speeds. Such restrictions can limit the number of suitable monitoring days, especially in places where clouds frequently form. This thesis proposes a new approach that allows estimating the P*M with data even from non-ideal, partially cloudy days. Based on non-parametric statistics, this procedure identifies and filters out noise as well as deviations from ideal conditions of irradiance, allowing for an estimation of P*M with similar accuracy as for a clear-sky day. This new procedure enables the characterization of a PV generator on a daily basis without the requirement to meet ideal conditions, thus, considerably enhancing the number of suitable monitoring days. To overcome the limitation in the P*M estimation and considerably extend the number of monitoring days, the new procedure can be applied to ideal and non-ideal conditions, such as partially cloudy days. This procedure determines the most probable nominal power value within one monitoring day using non-parametric statistics. In order to test the new procedure, a 109.44 kW photovoltaic plant in Granada, Spain, was monitored for six months. A referential procedure reported in the literature for large PV plants under ideal climatic conditions is first applied to estimate its nominal power. The results indicate that the nominal power can be estimated reliably in non-ideal conditions, maintaining the same precision as in ideal conditions. Then validating the procedure for a smaller PV generator and under different conditions, two small grid-connected 1.5 kW PV arrays were used. The PV systems in question are located in two different cities in Peru: Chachapoyas (tropical highland) and Lima (coastal desert). The objective of this study in Chachapoyas was to validate the methodology in a tropical climate with a high presence of clouds but at the same time with high irradiance values above 800 W/m2. According to the results obtained, under these conditions, the nominal power of the system can be calculated with reasonable certainty. As a precaution, monitoring for more than one day is recommended to obtain more data (at least 3 hours with high irradiance) to reduce uncertainties. Lima, Peru's second location under study, has a particular climate. Since the capital is located in a desert with high relative humidity values, dust deposition increases and power output decreases due to these conditions. For this purpose, the nominal power was used as a parameter to determine the maintenance schedule. Since keeping the system in optimal performance, considering this in future installations for operation and maintenance costs, is essential. The new procedure developed in this work can be applied to facilitate technical due diligence and quality control processes for PV generators of different sizes and under different operating conditions that are being re-purchased or have been recently installed. The possibility of daily monitoring of the P*M also enables long-term monitoring of a PV generator to ensure the correct operation or identify possible degradation effectsÍtem Texto completo enlazado Study of models for the nominal power characterization of a photovoltaic generator and the power estimation of different photovoltaic technologies in Lima, Peru(Pontificia Universidad Católica del Perú, 2022-03-02) Calsi Silva, Brando Xavier; Palomino Töfflinger, Jan AmaruThis work investigates two main aspects related to photovoltaic: systems and module characterization and performance modeling. The first part aims to characterize a PV generator located in Spain with a nominal power of 109.44 kW under standard test conditions according to the datasheet. An operational photovoltaic system's nominal power is a valid parameter for determining its current operational state. The applicability of a standard procedure to estimate the nominal power of an operating generator, proposed by Martínez-Moreno and based on Osterwald's model, is investigated. However, the standard procedure does not specify how to deal with experimental data when unexpected behavior impedes the nominal power estimation under operating conditions. During the 6-month study, the power-irradiance relation showed a hysteresis effect with varying amplitudes throughout the campaign. Adding a data filter that removes the non-linear part of the data proves necessary to estimate the nominal power, complementing Martinez-Moreno's procedure to enable the generators' characterization. The second part contributes to closing a knowledge gap in the performance behavior and predictability of multiple PV technologies in Peru. The quality of two simple analytical models for estimating the outdoor performance of three different photovoltaic module technologies in Lima was investigated. Osterwald's and the Constant Fill Factor models were applied to estimate the maximum power delivered by an Aluminum Back Surface Field, a Heterojunction with Intrinsic Thin-layer, and an amorphous/microcrystalline thin-film tandem PV module. The results point that both models overestimate the expected power compared to the measured one. Implementing a correction factor adjusts the estimated maximum power by both models. This correction factor allows us to estimate losses, calculate an adequate nominal power and minimize the estimated power error. The normalized root mean square error and mean bias error determine the implemented methodology's quality. The two crystalline silicon-based technologies present a similar behavior throughout the year. However, both differ considerably from the tandem one during different months, implying that the ambient variables have other seasonal impacts on their performance.Ítem Texto completo enlazado Estudio y aplicación de métodos analíticos para la extracción de parámetros eléctricos del modelo de un solo diodo para distintas tecnologías de módulos fotovoltaicos(Pontificia Universidad Católica del Perú, 2021-03-31) Perich Ibáñez, Renzo Alberto; Palomino Töfflinger, Jan AmaruThe single-diode model is used to characterize a photovoltaic (PV) solar cell using an equivalent circuit and an equation that depends on five electric parameters. Three analytical methods are applied to extract the five parameters from an Aluminium Back Surface Field (Al-BSF) PV module using 500 experimental current-voltage (I-V) curves measured in the 100-1000W/m2 range. Two of these methods are also applied to four thin-film PV modules, using four experimental I-V curves measured at an irradiance of 1000 W/m2 and air temperature 25℃. While parameter extraction methods have been studied before, this work offers a new perspective by applying the techniques to outdoor PV modules in Lima-Peru and, on the other hand, thin-film technologies located in Jaen-Spain. Results are presented by comparing the measured I-V curve with the ones modelled using the extracted parameters. The Normalized Root Mean Square Error (NRMSE) is calculated to evaluate and compare each extraction method. Values of NRMSE are then grouped by irradiance using a series of boxplots or bar charts to better visualize the success of each extraction method. The results indicate that the method proposed by Phang et al. is very robust, obtaining low values for error across the different irradiances and technologies (median NRMSE of 0.20 % for silicon and 0.50-1.10 % for thin-films). The Blas et al. method obtained low error with the silicon module (median NRMSE of 0.21 %), it was not applied to thin-films in this study. Finally, the Khan et al. method showed greater error than the other two when applied to the Al-BSF and thin-film modules, with noticeably higher error when applied to amorphous silicon modules (median NRMSE of 0.30 % for silicon and 1.77-6.73 % for thin-films).Ítem Texto completo enlazado Diseño conceptual de un sistema de filtrado de irradiancia directa en piranómetros(Pontificia Universidad Católica del Perú, 2021-02-16) Quispe Ochoa, Gerardo Raúl; Palomino Töfflinger, Jan AmaruActualmente, se utiliza el piranómetro como instrumento de medición de la irradiancia global (suma de las irradiancias directa y difusa). Sin embargo, los distintos tipos de irradiancia tienen un distinto rendimiento en las tecnologías de paneles fotovoltaicos que recientemente se están estudiando. Por lo tanto, el rendimiento de un panel está ligado a las cantidades de irradiancia de cada tipo y, por ende, deben ser cuantificadas para la evaluación del rendimiento de los paneles fotovoltaicos. Entonces se propone el diseño conceptual de un sistema de filtrado de irradiancia directa en piranómetros para que un usuario pueda cuantificar de forma automatizada estos tres tipos de irradiancia con un solo piranómetro. Anterior al diseño conceptual, se realiza un estudio del fundamento teórico sobre la radiación solar y las tecnologías existentes comerciales para la problemática. Luego, la lista de requerimientos es planteada según exigencias del laboratorio de paneles fotovoltaicos de la sección de Física de la PUCP y de la aplicación. En base a esta lista, se desarrollan los conceptos de solución siguiendo la metodología de diseño mecatrónico VDI 2206 y metodología de diseño de productos VDI 2221. Posteriormente, los conceptos de solución son evaluados técnica y económicamente según la metodología VDI 2225. Finalmente, se concluye con el desarrollo del concepto de solución óptimo del sistema. Este cumple con la propuesta de diseño de este documento y se encuentra listo para un próximo diseño de ingeniería.Ítem Texto completo enlazado Estudio de un sistema fotovoltaico: caracterización, simulación y evaluación de diversos métodos de análisis y predicción(Pontificia Universidad Católica del Perú, 2019-06-21) Gómez Sócola, Sebastian Miguel; Palomino Töfflinger, Jan Amaru; Casa Higueras, Juan de laEl uso de energía solar ha aumentado exponencialmente en los últimos años en el mundo. Sin embargo, en el Perú, los sistemas fotovoltaicos aún se limitan a proporciones bajas, con tan solo 96 MW instalados hasta la actualidad en el país, los cuales producen un 0.5 % de la energía total del Perú (Fuente: La industria de la Energía Renovable en el Perú, 2016). Además, están en proceso de construcción la planta fotovoltaica de Rubí (144.5 MW) e Intipampa (40.0 MW). Por otro lado, los sistemas fotovoltaicos conectados a la red de características modulares (pequeños) conectados a la red son nulos debido a no contar con políticas que respalden a estos. Al ser un tópico académico no del todo explotado en el Perú, es de interés todo tipo de investigación que promueva no solo el uso de este recurso, sino también que permita conocer y mejorar los mecanismos de estudio para estimar la eficiencia y la predicción de la producción de energía en condiciones meteorológicas nacionales. Osterwald (1986) [1] propuso un modelo simplificado del comportamiento en potencia de una célula fotovoltaica FV para unas condiciones de irradiancia incidente y temperatura de operación. Otros [2 - 4], a partir de esta propuesta, desarrollaron modelos empíricos y físicos por los cuales se puede modelar el comportamiento de un sistema fotovoltaico conectado a la red. Estos modelos se basan en los valores de las características eléctricas de los sistemas fotovoltaicos que son proporcionados por el proveedor y medidos a condiciones estándares. Sin embargo, para una mejor precisión, estos modelos deben ser ajustados ya que la producción eléctrica se da a condiciones de trabajo diferentes de los estándares. En consecuencia, estos modelos predicen la producción de energía con una desviación en valores considerable, es decir, se alejan de los datos recolectados. El principal objetivo del presente trabajo es proponer métodos que permitan obtener el valor de potencia máxima real, asumidas todas las pérdidas intrínsecas de operación de este tipo de sistemas, en condiciones estándar o Ppvg ∗ . En este caso se ha trabajado con datos recolectado en las instalaciones de la Universidad Nacional de San Agustín de Arequipa. Dicho parámetro nos servirá para describir exactamente al sistema en ciertas condiciones dadas y aplicar este conocimiento para la estimación de la energía que generará el sistema para unas condiciones dadas de irradiancia y temperatura de módulo. Finalmente, se debe recalcar que el Perú cuenta con múltiples microclimas, y para cada microclima específico se esperan distintas relaciones de Ppvg ∗ con respecto a la potencia nominal.