Tesis y Trabajos de Investigación PUCP

URI permanente para esta comunidadhttp://54.81.141.168/handle/123456789/6

El Repositorio Digital de Tesis y Trabajos de Investigación PUCP aporta al Repositorio Institucional con todos sus registros, organizados por grado: Doctorado, Maestría, Licenciatura y Bachillerato. Se actualiza permanentemente con las nuevas tesis y trabajos de investigación sustentados y autorizados, así como también con los que que fueron sustentados años atrás.
Ingresa a su web: Repositorio Digital de Tesis y Trabajos de Investigación PUCP

Explorar

Resultados de búsqueda

Mostrando 1 - 2 de 2
  • Ítem
    Control of autonomous multibody vehicles using artificial intelligence
    (Pontificia Universidad Católica del Perú, 2021-03-26) Roder, Benedikt; Morán Cárdenas, Antonio Manuel
    The field of autonomous driving has been evolving rapidly within the last few years and a lot of research has been dedicated towards the control of autonomous vehicles, especially car-like ones. Due to the recent successes of artificial intelligence techniques, even more complex problems can be solved, such as the control of autonomous multibody vehicles. Multibody vehicles can accomplish transportation tasks in a faster and cheaper way compared to multiple individual mobile vehicles or robots. But even for a human, driving a truck-trailer is a challenging task. This is because of the complex structure of the vehicle and the maneuvers that it has to perform, such as reverse parking to a loading dock. In addition, the detailed technical solution for an autonomous truck is challenging and even though many single-domain solutions are available, e.g. for pathplanning, no holistic framework exists. Also, from the control point of view, designing such a controller is a high complexity problem, which makes it a widely used benchmark. In this thesis, a concept for a plurality of tasks is presented. In contrast to most of the existing literature, a holistic approach is developed which combines many stand-alone systems to one entire framework. The framework consists of a plurality of modules, such as modeling, pathplanning, training for neural networks, controlling, jack-knife avoidance, direction switching, simulation, visualization and testing. There are model-based and model-free control approaches and the system comprises various pathplanning methods and target types. It also accounts for noisy sensors and the simulation of whole environments. To achieve superior performance, several modules had to be developed, redesigned and interlinked with each other. A pathplanning module with multiple available methods optimizes the desired position by also providing an efficient implementation for trajectory following. Classical approaches, such as optimal control (LQR) and model predictive control (MPC) can safely control a truck with a given model. Machine learning based approaches, such as deep reinforcement learning, are designed, implemented, trained and tested successfully. Furthermore, the switching of the driving direction is enabled by continuous analysis of a cost function to avoid collisions and improve driving behavior. This thesis introduces a working system of all integrated modules. The system proposed can complete complex scenarios, including situations with buildings and partial trajectories. In thousands of simulations, the system using the LQR controller or the reinforcement learning agent had a success rate of >95 % in steering a truck with one trailer, even with added noise. For the development of autonomous vehicles, the implementation of AI at scale is important. This is why a digital twin of the truck-trailer is used to simulate the full system at a much higher speed than one can collect data in real life.
  • Ítem
    Diseño y simulación de un sistema de control de formación de vehículos autónomos marítimos de baja velocidad
    (Pontificia Universidad Católica del Perú, 2016-05-30) Durand Cárdenas, José Alfredo; Morán Cárdenas, Antonio Manuel
    El presente trabajo tiene por objetivo sentar las bases necesarias para el desarrollo, diseño, control e implementación de un sistema multiagente, específicamente sobre un conjunto de robots marítimos. Este tipo de sistema tiene varias aplicaciones. Desde el punto de vista académico, el proceso de establecer un patrón de formación deseado consiste en una tarea laboriosa y desafiante. Por otro lado, la idea de usar estos robots como un conjunto permite a las industrias navales y agencias meteorológicas reducir horas de trabajos de campo e investigación. Sin embargo, para lograr estos propósitos es necesario saber las características que presentan estos sistemas y las herramientas de software y hardware con las que se cuenta, de manera que se pueda elaborar una estrategia de control de formación. Esta información es detallada en la presente tesis, cuya estructura es la siguiente: El capítulo I presenta el Estado del arte de los vehículos autónomos de superficie. Se explica cómo se inició el interés por el estudio de dichos vehículos y los modelos que se han ido desarrollando en esta área de la robótica marítima. Teniendo en cuenta ello, se presenta adicionalmente un resumen de las técnicas y algoritmos empleados para lograr un adecuado control de formación de un sistema constituido por varios robots, en el que se señalan algunas diferencias. En el capítulo II se obtuvo el modelo matemático de un vehículo de superficie. En él se definen los sistemas de referencia necesarios para describir el movimiento del robot marítimo y se obtienen las ecuaciones cinemáticas y dinámicas mediante el uso de una matriz de rotación, la aplicación de las leyes de Newton, y principios de hidrodinámica e hidrostática. Así también, se explican los modelos usados para las perturbaciones que afectan al robot. El proceso de las pruebas experimentales es detallado en el Capítulo III. Se explica brevemente las características de los sensores y actuadores empleados, y además, se presentan los parámetros a tener en cuenta en las simulaciones desarrolladas. En el capítulo IV se presenta el diseño del controlador de formación. Se usan 2 enfoques para poder comparar los resultados obtenidos con cada una de las estrategias. Asimismo, en cada una de ellas se analiza la controlabilidad y estabilidad del esquema de formación deseado. El modelo que permite relacionar las fuerzas requeridas por el sistema con las fuerzas permitidas por los actuadores se explica detalladamente en el capítulo V. El capítulo VI presenta los resultados obtenidos con los controladores diseñados en el entorno de MATLAB-Simulink. Se muestra también el efecto de las perturbaciones sobre la formación y se distinguen las principales diferencias entre una y otra estrategia. Finalmente, se mencionan las conclusiones generales y trabajos futuros planteados, así como también se sugieren algunas recomendaciones.