Tesis y Trabajos de Investigación PUCP

URI permanente para esta comunidadhttp://54.81.141.168/handle/123456789/6

El Repositorio Digital de Tesis y Trabajos de Investigación PUCP aporta al Repositorio Institucional con todos sus registros, organizados por grado: Doctorado, Maestría, Licenciatura y Bachillerato. Se actualiza permanentemente con las nuevas tesis y trabajos de investigación sustentados y autorizados, así como también con los que que fueron sustentados años atrás.
Ingresa a su web: Repositorio Digital de Tesis y Trabajos de Investigación PUCP

Explorar

Resultados de búsqueda

Mostrando 1 - 1 de 1
  • Ítem
    Extensiones del concepto de función co-radiante
    (Pontificia Universidad Católica del Perú, 2017-11-09) Jordán Liza, Abelardo; Martínez Legaz, Juan Enrique
    En la presente tesis se han introducido y estudiado nuevas nociones de función co-radiante de valor real extendido y de valor conjunto, definidas en un cono de un espacio euclídeo. El estudio exhaustivo que se hace de ellas ha permitido hacer contribuciones en el análisis multivaluado no convexo, así como disponer de herramientas matemáticas adecuadas para analizar con un nivel de generalidad superior, las tradicionales funciones de producción que en la teoría económica se las denomina funciones de rendimientos decrecientes a escala. Se proponen las funciones alfa-co-radiantes que incluyen funciones como las de Cobb-Douglas de grado alfa y las de elasticidad de sustitución constante. Asimismo, se presentan representaciones convexas de las funciones alfa co-radiantes y se hacen algunos aportes para las funciones cóncavas y homogéneas de grado alfa. Los resultados de mayor relevancia en esta tesis se basan en las nociones originales de aplicación multivaluada coradiante, así como en la de aplicación multivaluada inversa co-radiante. Las aplicaciones multivaluadas co-radiantes de valor no convexo son importantes para el moderno tratamiento matemático de las tecnolog´ıas de producción. Se presenta un análisis minucioso de estas aplicaciones desde el punto de vista de la convexidad abstracta. Esto ´ultimo posee un conjunto de técnicas para problemas no convexos, usando ideas provenientes del análisis convexo. Los principales resultados son las representaciones externas para aplicaciones multivaluadas co-radiantes y para aplicaciones multivaluadas inversas co-radiantes, valiéndonos de aplicaciones multivaluadas denominadas elementales o generadoras. Asimismo, se define la función coste asociada a una aplicación multivaluada de producción y se hace un análisis de esta función en el esquema de la convexidad abstracta. Finalmente, se establecen condiciones que permiten recuperar una aplicación multivaluada primitiva a partir de la función coste. Cabe mencionar, que la convexidad abstracta tiene importantes aportes en áreas como la Optimización Global y la Teoríıa del Transporte ´ Optimo; por consiguiente la tesis se enmarca en un área de investigación de gran interés en la actualidad, que va más allá del esquema económico que motivó la presente investigación.