Tesis y Trabajos de Investigación PUCP

URI permanente para esta comunidadhttp://54.81.141.168/handle/123456789/6

El Repositorio Digital de Tesis y Trabajos de Investigación PUCP aporta al Repositorio Institucional con todos sus registros, organizados por grado: Doctorado, Maestría, Licenciatura y Bachillerato. Se actualiza permanentemente con las nuevas tesis y trabajos de investigación sustentados y autorizados, así como también con los que que fueron sustentados años atrás.
Ingresa a su web: Repositorio Digital de Tesis y Trabajos de Investigación PUCP

Explorar

Resultados de búsqueda

Mostrando 1 - 10 de 11
  • Ítem
    Recasting and Validating a Search for Long Lived Particles using a CalRatio trigger in the ATLAS experiment
    (Pontificia Universidad Católica del Perú, 2023-09-22) Coll Saravia, Lucía Ximena; Jones Pérez, Joel
    The Standard Model (SM) of particle physics consists in a description of all the known elementary particles and their interactions. As far as it is known, the SM has passed all experimental tests, but presents some imperfections having no explanation for such as the presence of neutrino masses and the hierarchy problem. This encourages to probe theories beyond the Standard Model (BSM) that could bring solutions to these problems. An interesting proposal is to search for neutral long lived particles (LLPs). These type of particles have long decay lengths, can be generated by a variety of BSM models and could be detected in collider experiments by searching for displaced signals. The detection of the decay products of LLPs decays will contribute to the discovery of new physics. The objective of this work is to upgrade and optimize the PUCP Toy Detector presented in [1], adapting the simulation to the ATLAS detector and adding new features as a Geant4 simulation of the calorimeter for calculating the energy deposits. And validating it by reproducing the result of the searches presented in [2]. We conclude that the PUCP Toy Detector is valid, well implemented, and will be a competitive tool for searching new models containing LLPs decaying inside the calorimeters in the future.
  • Ítem
    Assessment of searches for long-lived heavy neutrinos decaying into photons
    (Pontificia Universidad Católica del Perú, 2023-05-24) Manrique Chavil, Cristian Miguel; Jones Pérez, Joel
    El Portal Seesaw de Dimensión-5 es un modelo Seesaw de tipo I extendido por operadores con d = 5 involucrando a estados estériles. Estos llevan a nuevas interacciones entre todos los neutrinos y los bosones neutros del Modelo Estándar. En este trabajo estudiaremos la producción de pares de neutrinos pesados a partir de la desintegración del bosón de Higgs, donde los primeros tienen un largo tiempo de vida, decayendo posteriormente a un fotón y un neutrino ligero. Exploramos este proceso reproduciendo teóricamente dos búsquedas experimentales de fotones “no apuntadores” por ATLAS, mostrando la distribución esperada de eventos en términos del tiempo de llegada ty y la variable “apuntadora” |zy| Nuestros resultados indican que la búsqueda a 8 TeV no es apropiada para nuestro modelo. Por otro lado, la búsqeuda a 13 TeV, adaptada para un gatillo de VBF, resulta mucho más prometedora.
  • Ítem
    Explorando y analizando el espacio de parámetros del modelo Type I Seesaw con simuladores Monte Carlo para eventos en el ILC
    (Pontificia Universidad Católica del Perú, 2023-02-15) Rodríguez Quispe, Walter Enrique; Jones Pérez, Joel
    En la actualidad, el Modelo Estándar (SM) es la teoría más precisa que se tiene para la descripción de las partículas elementales y sus interacciones fundamentales. Esta teoría, empero, está incompleta: una de sus carencias resulta de indicar que los neutrinos no tienen masa. Esto es incongruente porque la masividad de estas part´ıculas ha sido demostrada en los experimentos de oscilaciones de neutrinos. Ante esto, se han propuesto varios modelos Más Allá del Modelo Estándar (BSM) que logran brindarle masa a los neutrinos. En este trabajo se le da principal atenci´on al mecanismo Type I Seesaw, que propone la existencia de neutrinos pesados. Es así como en este trabajo se aborda un análisis para el estudio del modelo mencionado en el futuro International Linear Collider (ILC), desde el uso de conceptos propios del Large Hadron Collider (LHC), para la búsqueda de señales de neutrinos pesados. Los eventos que surgirían en este colisionador siguiendo el modelo en cuestión se obtuvieron del simulador Monte Carlo MadGraph5_aMC@NLO y el análisis de estos se realizó en MadAnalysis 5. El estudio demuestra la importancia de incluir un análisis con información tanto de la simulación con los datos del Monte Carlo, que brinda información sin considerar la observabilidad de lo generado, como de los objetos reconstruidos, que brinda datos recolectados por los detectores, para decantar la elección de un canal en específico.
  • Ítem
    Búsqueda de neutrinos pesados vía fotones fuera de tiempo en colisionadores
    (Pontificia Universidad Católica del Perú, 2023-02-15) Delgado Dador, Cesar Franco; Jones Pérez, Joel
    El Modelo Estándar de Física de Partículas (ME) es una teoría que une tres de las interacciones fundamentales de la naturaleza en una solución elegante. Describe las propiedades e interacciones de fermiones con spin ½ y bosones con spin entero. Estos fermiones luego son subdivididos en quarks y leptones. En el ME, los neutrinos se consideran partículas sin masa pero esta característica luego fue refutada por experimentos de oscilación, demostrando que tienen masas de hasta 0.1ev. Esto significa que el ME debe ser extendido para brindar masas a los neutrinos. El mecanismo Seesaw es una de esas extensiones que permite a los neutrinos tener masas mediante la introducción de neutrinos masivos estériles y de mano derecha. En este trabajo extendemos el modelo Seesaw al añadir operadores efectivos de dimensión 5 que median la producción y decaimiento de neutrinos pesados de larga vida N con masas en el orden de los GeV. Exploramos la producción de N mediante decaimientos exóticos del Higgs a través del operador efectivo neutrino-Higgs. El neutrino pesado luego decae a un neutrino del ME y un fotón por medio del operador dipolar, cuyo decaimiento parcial es calculado de forma analítica. Consideramos dos procesos de producción del Higgs: gluon fusion (GF) y vector boson fusion (VBF). Evaluamos la posible de detección de N con búsquedas de fotones desplazados en el detector ATLAS para energía de colisión de 13 TeV, simulado en MadGraph. Estas búsquedas usaron variables de tiempo retardado e indirección, ty y Azy |, respectivamente. Encontramos que para procesos de GF y VBF, la mayoría de eventos tipo señal pertenecen a las regiones de background y control en lugar de la región de señal, significando que la búsqueda realizada en este trabajo no es sensible al modelo.
  • Ítem
    Replicación y estudio de análisis fenomenológicos para búsquedas de neutrinos pesados del modelo Type-l Seesaw usando Madanalysis 5
    (Pontificia Universidad Católica del Perú, 2023-02-15) Zegarra Herrera, Danilo; Jones Pérez, Joel
    El Modelo Estándar de las partículas elementales (SM) es una teoría unificadora de las interacciones fuertes, débiles y electromagnéticas. A pesar de su gran éxito teórico y experimental, aún quedan muchas incógnitas que resolver. Una de estas es la masa de los neutrinos. En este modelo los neutrinos son partículas sin masa, no obstante, esta característica ha sido refutada por los experimentos de oscilaciones de neutrinos. El mecanismo Seesaw es una posible extensión que podría explicar esto. Para ello agrega neutrinos de mano derecha al SM que permiten generar tanto términos de masa de Dirac como de Majorana. Este modelo, adicionalmente, explica la supresión de la masa de los neutrinos del SM respecto a los demás fermiones. Esto motiva la búsqueda de neutrinos pesados en colisionadores tales como el LHC por medio de colisiones protón-protón. En este trabajo se utilizaron distintos programas de simulación para así obtener los datos necesarios para estudiar la fenomenología del modelo Seesaw en el LHC. El primer objetivo fue comparar los resultados obtenidos en este trabajo con los del paper [1]. Se obtuvo que los resultados del análisis están en el ball park en comparación a los de este. El segundo objetivo fue interpretar la señal observada proponiendo distintas hipótesis. Estas fueron corroboradas utilizando cortes en distintos observables tales como la separación angular, momentum transversal y pseudorapidity aplicados a distintas regiones de análisis características del modelo Seesaw. Esto permitirá testear más eficientemente las posibles señales que este modelo podría tener en el LHC.
  • Ítem
    Desarrollo de un detector juguete basado en el experimento CMS para la búsqueda de partículas neutras con largo tiempo de vida
    (Pontificia Universidad Católica del Perú, 2020-09-11) Coll Saravia, Lucía Ximena; Jones Pérez, Joel
    The Standard Model (SM) of particle physics consists in a description of all the known elemen-tary particles and their interactions. As far as it is known, the SM has passed all experimental tests, but presents some imperfections such as the presence of neutrino masses and the hierarchy problem. This encourages to probe theories beyond the Standard Model (BSM) that could bring solutions to these problems. An interesting proposal is to search for neutral long lived particles (LLP). These type of particles have long decay lengths and can be generated by a variety of BSM models such as Supersymmetry (SUSY), which proposes a solution to the hierarchy problem, and the Seesaw Mechanism that generates massive neutrinos. The detection of the decay products of LLPs would contribute to the discovery of new physics. The objective of this work is to develop a toy detector based on C++ and Pythia8 with the purpose of creating a tool for searches of neutral long lived particles. All the features, including the geometric characteristics and the particle accep- tance are constructed with information from the sub detectors of the CMS experiment. We use a Minimal SUSY process that violates R parity (RPVMSSM) to simulate processes producing LLPs in MadGraph5 and study the response of the toy detector. We conclude our simulation properly recreates important experimental conditions, and is suitable as a first step towards an international competitive particle physics tool.
  • Ítem
    Búsqueda de neutrinos pesados vía vértices desplazados en procesos de fusión de bosones vectoriales en colisionadores
    (Pontificia Universidad Católica del Perú, 2019-10-04) Masias Teves, Joaquin Aurelio; Jones Pérez, Joel
    The Standard Model (SM) is the theory that describes elementary particles and their fundamental interactions. In the Standard Model neutrinos are massless particles. Nevertheless, this has been proven wrong by neutrino oscillation experiments. Neutrinos possess mass, but several orders of magnitude below those of the other SM fermions. This invites the consideration of new physics, beyond that described by the SM, that could explain the smallness of neutrino mass. This is achieved, in particular, in the Type-1 Seesaw model, which is the focus of this work. Neutrinos are especially difficult to detect in colliders, since they are chargeless, they leave no tracks, and no energy in the calorimeters. However, if massive enough, these new neutrinos can decay into charged particles inside the collider, which results in tracks with displaced vertices. A complete analysis of this processes is required in order to characterize the parameters of these new particles. In this work we use the MonteCarlo simulation program MadGraph to study the relevant processes that involve these neutrinos. The principal objective of this work is to define the probability to observe the heavy neutrinos as Higgs decay products in the LHC (and HL-LHC), when they have been produced via vector boson fusion (VBF) and are in the section of parameter space useful for displaced vertices.
  • Ítem
    Estudio de cortes cinemáticos en la búsqueda de física nueva en el LHC
    (Pontificia Universidad Católica del Perú, 2018-07-09) Silva Malpartida, Yolvi Javier; Jones Pérez, Joel
    Uno de los retos más importantes en la búsqueda de física nueva, en los procesos del LHC, es reducir el “Ruido de fondo". En este trabajo, se buscará reducir el “Ruido de fondo" de algunos procesos del Modelo Estándar como la producción de pp ---> tt + jets, pp ---> W + jets, pp ---> Z + jets (Z---> vv ) y multijets (pp ---> jets), con un conjunto de cortes cinemáticos a variables usados en el experimento CMS. Para este propósito se empleará software avanzado como Pythia y Delphes.
  • Ítem
    Majorana vs Pseudo-Dirac Neutrinos at the ILC
    (Pontificia Universidad Católica del Perú, 2018-06-21) Suarez Navarro, Omar Giancarlo; Jones Pérez, Joel
    Modelos Seesaw de masas de neutrinos a baja escala con una simetría aproximada de número leptónico pueden ser probados en colisionadores. En el modelo mínimo Seesaw Tipo I, implica la existencia de dos fermiones de Majorana pesados altamente degenerados que forman un par Pseudo-Dirac. Una pregunta muy importante es, en qué medida los futuros colisionadores tendrán sensibilidad al splitting entre los componentes de Majorana de este lepton pesado neutro, que señala la ruptura de número leptónico. Consideramos la producción de estos leptones pesados en la ILC, donde sus displaced decays proporcionan una señal de oro: una asimetría forward-backward, que depende crucialmente del splitting de la masa entre los dos componentes de Majorana. Mostramos que este observable puede limitar el splitting de la masa a valores mucho m´as bajos que los límites actuales, que provienen del neutrinoless double beta decay y las loop corrections.
  • Ítem
    Constraining sleptons at the LHC in a supersymmetric low-scale seesaw scenario
    (Pontificia Universidad Católica del Perú, 2017-06-28) Cerna Velazco, Nhell Heder; Jones Pérez, Joel
    The discovery of the Higgs boson in the 8 TeV run of the LHC [1, 2] marks one of the most important milestones in particle physics. Its mass is already known rather precisely: mh = 125.09 ± 0.21 (stat.) ±0.11 (syst.) GeV [3], and the signal strength of various LHC searches has been found consistent with the SM predictions. While this completes the Standard Model (SM) particle-wise, several questions still remain open, for example: (i) Is it possible to include the SM in a grand unified theory where all gauge forces unify? (ii) Is there a particle physics explanation of the observed dark matter relic density? (iii) What causes the hierarchy in the fermion mass spectrum and why are neutrinos so much lighter than the other fermions? What causes the observed mixing patterns in the fermion sector? (iv) What stabilizes the Higgs mass at the electroweak scale? Supersymmetric model address several of these questions and consequently the search for supersymmetry (SUSY) is among the main priorities of the LHC collaborations. Up to now no significant sign for physics beyond SM has been found. The combination of the Higgs discovery with the (yet) unsuccessful searches has led to the introduction of a model class called ‘natural SUSY’ [4–15]. Here, the basic idea is to give electroweak-scale masses only to those SUSY particles giving a sizeable contribution to the mass of the Higgs boson, such that a too large tuning of parameters is avoided. All other particle masses are taken at the multi-TeV scale. In particular, masses of the order of a few hundred GeV up to about one TeV are assigned to the higgsinos (the partners of the Higgs bosons), the lightest stop (the partner of the top-quark) and, if the latter is mainly a left-stop, also to the light sbottom In addition the gluino and the heavier stop masses should also be close to at most a few TeV. Neutrino oscillation experiments confirm that at least two neutrinos have a non-zero mass. The exact mass generation mechanism for these particles is unknown, and both the SM and the MSSM remain agnostic on this topic. Although many ways to generate neutrino mass exist, perhaps the most popular one is the seesaw mechanism [16–21]. The main problem with the usual seesaw mechanisms lies on the difficulty in testing its validity. In general, if Yukawa couplings are sizeable, the seesaw relations require Majorana neutrino masses to be very large, such that the new heavy states cannot be produced at colliders. In contrast, if one requires the masses to be light, then the Yukawas need to be small, making production cross-sections and decay rates to vanish. A possible way out of this dilemma lies on what 3 is called the inverse seesaw [22], which is based on having specific structures on the mass matrix (generally motivated by symmetry arguments) to generate small neutrino masses. This, at the same time, allows Yukawa couplings to be large, and sterile masses to be light. We consider here a supersymmetric model where neutrino data are explained via a minimal inverse seesaw scenario where the gauge-singlet neutrinos have masses in the range O(keV) to O(100 GeV). We explore this with a parametrization built for the standard seesaw, and go to the limit where the inverse seesaw emerges, such that Yukawas and mixings become sizeable. Although non-SUSY versions of this scenario can solve the dark matter and matter-antimatter asymmetry problems [23–25], we shall make no claim on these issues in our model. In view of the naturalness arguments, we further assume that the higgsinos have masses of O(100 GeV), whereas the gaugino masses lie at the multi-TeV scale (see [26] for an example of such a scenario). In addition, we assume all squarks are heavy enough such that LHC bounds are avoided, and play no role in the phenomenology within this work1. In contrast we allow for fairly light sleptons and investigate the extent to which current LHC data can constrain such scenarios. This paper is organized as follows: in the next section we present the model. Section III summarizes the numerical tools used and gives an overview of the LHC analysis used for these investigations. In Section IV we present our findings for the two generic scenarios which differ in the nature of the lighest supersymmetric particle (LSP): a Higgsino LSP and a sneutrino LSP. In Section V we draw our conclusions. Appendices A and B give the complete formulae for the neutrino and sneutrino masses.