Tesis y Trabajos de Investigación PUCP
URI permanente para esta comunidadhttp://54.81.141.168/handle/123456789/6
El Repositorio Digital de Tesis y Trabajos de Investigación PUCP aporta al Repositorio Institucional con todos sus registros, organizados por grado: Doctorado, Maestría, Licenciatura y Bachillerato. Se actualiza permanentemente con las nuevas tesis y trabajos de investigación sustentados y autorizados, así como también con los que que fueron sustentados años atrás.
Ingresa a su web: Repositorio Digital de Tesis y Trabajos de Investigación PUCP
Explorar
4 resultados
Resultados de búsqueda
Ítem Texto completo enlazado Diseño de un exoesqueleto para asistir la articulación de la rodilla al correr(Pontificia Universidad Católica del Perú, 2021-08-23) Torres Ricalde, Diego Rodrigo; Elías Giordano, Dante ÁngelEn la presente tesis se realiza el diseño de un exoesqueleto para asistir la articulación de la rodilla al correr. Una característica importante de este diseño es la fuerza que puede generar teniendo en cuenta que tiene una masa de 4.2 kg (con una masa de 1.3 kg en cada pierna y 1.6 kg cargados en una mochila), con lo cual se puede considerar ligero en comparación a otros exoesqueletos con funciones similares. Esto es posible gracias al uso de métodos de optimización de forma y materiales ligeros, pero al mismo tiempo resistentes. El diseño se basa en un concepto de solución, así como en una serie de consideraciones, y aborda la selección y el dimensionamiento de los componentes del exoesqueleto, además de simulaciones mediante el método de elementos finitos para verificar el funcionamiento de estos e incluso diseñar algunos de ellos. También se presentan los planos de ensamble y despiece para su fabricación, así como el diagrama esquemático para la fabricación y conexión de las tarjetas electrónicas diseñadas. El exoesqueleto presentado en este trabajo es capaz de generar un momento de hasta 71 Nm (aproximadamente) mediante el uso de un resorte de torsión, un innovador mecanismo de transmisión y un freno electromagnético. Por otro lado, utiliza un motor sin escobillas de rotor externo, sensores de efecto Hall y codificadores de anillo para realizar un control de fuerza, en base a la deformación del resorte de torsión, con el fin de que el usuario pueda mover su pierna sin impedimentos, tanto al correr como al caminar. Así, al utilizar este motor con el freno electromagnético mencionado anteriormente, se alcanza una alta eficiencia del sistema, lo que permite que este tenga una autonomía de aproximadamente una hora utilizando un par de baterías. Por último, es importante mencionar que el costo de fabricación estimado del dispositivo es de S/. 9880 aproximadamente, incluyendo la importación de ciertos elementos que no se pueden encontrar en el país. Así mismo, el costo de diseño se estima en S/. 38,000.Ítem Texto completo enlazado Estudio comparativo de exoesqueletos de miembros superiores de actuación pasiva basados en técnicas de compensación de carga(Pontificia Universidad Católica del Perú, 2021-02-15) Tang Juy, Javier Antonio; Elías Giordano, Dante ÁngelEn este trabajo se desarrolló un estudio comparativo de los principales exoesqueletos industriales de miembros superiores con actuación pasiva desarrollados en la actualidad, los cuales tienen la finalidad de proveer una fuerza de asistencia para minimizar la fatiga del usuario al trabajar en posiciones poco ergonómicas por tiempos prolongados. Estos exoesqueletos se basan en principios o técnicas de compensación de carga, las cuales incorporan distintas configuraciones y mecanismos con actuadores pasivos, tales como resortes acoplados a sistemas de cables y poleas; resortes acoplados a mecanismos de levas con seguidor, entre otros; para finalmente generar una fuerza que equilibre la carga que se desea manipular. En este sentido, primero se realizó una revisión bibliográfica de la tecnología en exoesqueletos, con énfasis en los principales exoesqueletos desarrollados actualmente para ser aplicados en el sector industrial. Se determinó que, para aplicaciones industriales, la alternativa más viable es optar por el desarrollo de exoesqueletos pasivos. Por consiguiente, una vez presentado el panorama actual de la tecnología en exoesqueletos industriales pasivos, se investigaron las principales técnicas de compensación de carga en las cuales se basan los mecanismos de actuación incorporados por estos dispositivos. Esto se realizó con la finalidad de analizar los principios físicos y/o mecánicos de funcionamiento de los mecanismos de actuación pasivos. Finalmente, se procedió a analizar 8 de los principales exoesqueletos industriales de miembros superiores de actuación pasiva, para luego compararlos y determinar las ventajas de las distintas técnicas de compensación de carga aplicadas en el desarrollo de sus mecanismos de actuación.Ítem Texto completo enlazado Modelación y simulación dinámica en el desarrollo de un sistema actuado para tobillo que asista al movimiento del pie en la marcha(Pontificia Universidad Católica del Perú, 2018-06-19) Luis Peña, Abraham Israel; Elías Giordano, Dante ÁngelEn el presente estudio se realizó la modelación y simulación dinámica de un novedoso sistema actuado para tobillo para la asistencia del movimiento de flexión plantar durante la caminata. Es así que, en la primera parte, se describe la anatomía funcional y biomecánica del sistema pierna-pie, y además se detalla el comportamiento de los principales elementos del sistema músculo esquelético. Posteriormente, se realiza el estado del arte sobre tecnologías portátiles asistenciales de tobillo, y se presentan los principales métodos de modelación y simulación computacional para la evaluación del desempeño de dichos dispositivos. En base al marco teórico presentado, se desarrollan los requerimientos y la conceptualización del diseño preliminar de un sistema actuado cuasi pasivo que contiene un accionamiento controlable capaz de almacenar y liberar energía elástica y así asistir a la marcha. Luego se realiza la modelación del cuerpo humano empleando el modelamiento “linksegmento”, ampliamente usado para análisis biomecánico del movimiento, y se implementa virtualmente el dispositivo propuesto a fin de analizar el comportamiento de su interacción durante la caminata a través de simulaciones dinámicas. El cálculo de la simulación se realiza de manera computacional empleando el software MATLAB a través de la técnica de dinámica inversa. Finalmente, estos resultados permiten entender el comportamiento dinámico del sistema actuado propuesto, así como los parámetros del accionamiento controlable para un desempeño óptimo en la asistencia de la marcha. Este conocimiento aporta al entendimiento de la interacción biomecánica de dispositivos asistenciales y además sienta las bases para el futuro diseño e implementación del dispositivo.Ítem Texto completo enlazado Diseño del sistema mecánico de un equipo para rehabilitación de la muñeca usando mecanismos paralelos(Pontificia Universidad Católica del Perú, 2017-08-03) Pajares Correa, Brian David; Elías Giordano, Dante ÁngelEl presente proyecto de investigación presenta una alternativa económica, de fabricación nacional, versátil y de bajo impacto ambiental para la fabricación de un equipo de alta tecnología usado en la medicina específicamente en pacientes con lesiones en la muñeca. Se trata de un equipo que utiliza tres actuadores eléctricos que al actuar conjuntamente permiten simular los movimientos de la muñeca que son pronación, supinación, flexión cubital, flexión radial, extensión y flexión. Se seleccionó la solución óptima entre 3 modelos considerando criterios económicos y técnicos. Esta solución incluye la utilización de dos actuadores eléctricos lineales modelo CAHB-10 serie 2 de la marca SKF. Estos actuadores tienen una longitud de carrera de 100 mm y una fuerza de empuje y tracción de 240 N. Su velocidad es de 24 a 30 mm/s. El tercer actuador es un motor eléctrico de pasos marca SureStep modelo STP-MTR-17048. Su torque de eje detenido es 0.59 N-m y fuerza máxima radial iguala 1.82 kg. Interactuando conjuntamente estos equipos, van a permitir realizar los movimientos complejos en simultáneo en pacientes con lesiones en la muñeca que necesitan una rehabilitación total. La solución óptima se realizó en SolidWork, un software en 3D para poder hacer simulaciones de movimiento y analizar las posiciones de máximos esfuerzos. El análisis de la posición de máximos esfuerzos permitió recaudar la información necesaria para analizar la resistencia de los componentes más críticos. La simulación en el software permitió además verificar que el equipo alcanza todos los máximos ángulos en todos los movimientos que se requiere en la rehabilitación. Finalmente se elaboró los planos de detalles, ensambles y se evaluó los costos de su fabricación. El costo del equipo es aproximadamente US$ 3,000. Se concluye que es posible realizar máquinas especializadas para personas que tienen una lesión a la muñeca y necesita de rehabilitación en el Perú.