Tesis y Trabajos de Investigación PUCP

URI permanente para esta comunidadhttp://54.81.141.168/handle/123456789/6

El Repositorio Digital de Tesis y Trabajos de Investigación PUCP aporta al Repositorio Institucional con todos sus registros, organizados por grado: Doctorado, Maestría, Licenciatura y Bachillerato. Se actualiza permanentemente con las nuevas tesis y trabajos de investigación sustentados y autorizados, así como también con los que que fueron sustentados años atrás.
Ingresa a su web: Repositorio Digital de Tesis y Trabajos de Investigación PUCP

Explorar

Resultados de búsqueda

Mostrando 1 - 1 de 1
  • Ítem
    La geometría simpléctica en la mecánica clásica
    (Pontificia Universidad Católica del Perú, 2024-03-05) Rosales Ventocilla, Jimmy Leonardo; Castillo Egoavil, Hernan Alfredo
    Este trabajo se adentra en la exploración de las aplicaciones de la geometría simpléctica en la física en el contexto de la mecánica clásica. La motivación subyacente a esta exploración radica en la comprensión de que la teoría convencional proporcionada por la literatura tradicional resulta insuficiente para analizar todas las complejidades que un sistema físico puede resentar. Por ejemplo, asegurar la existencia de trayectorias periódicas o identificar simetrías en el sistema no puede alcanzarse plenamente con los conocimientos clásicos de la mecánica. Por lo tanto, se hace imperativo incorporar los conceptos de geometría diferencial y sistemas dinámicos en el marco de la mecánica. Para alcanzar este objetivo, comenzaremos por revisar los fundamentos de la mecánica, enfocándonos inicialmente en los formalismos Lagrangiano y Hamiltoniano. A medida que desarrollemos estos conceptos esenciales, observaremos cómo emergen de manera natural los conceptos de variedades diferenciales, formas diferenciales, formas simplécticas y otros elementos relacionados con la geometría diferencial y simpléctica. Adicionalmente, profundizaremos en la teoría de invariantes, donde presentaremos y demostraremos el teorema de Noether en el contexto de la geometría diferencial. Este teorema proporcionará una comprensión más profunda para abordar los sistemas físicos desde una perspectiva geométrica. Finalmente, exploraremos cómo estas influyentes teorías matemáticas, tanto la teoría de invariantes como la geometría simpléctica, nos dotarán de herramientas más sólidas para enfrentar las complejidades de los sistemas físicos analizados en la literatura de la mecánica clásica, permitiéndonos resolverlos de manera más efectiva.