Tesis y Trabajos de Investigación PUCP

URI permanente para esta comunidadhttp://54.81.141.168/handle/123456789/6

El Repositorio Digital de Tesis y Trabajos de Investigación PUCP aporta al Repositorio Institucional con todos sus registros, organizados por grado: Doctorado, Maestría, Licenciatura y Bachillerato. Se actualiza permanentemente con las nuevas tesis y trabajos de investigación sustentados y autorizados, así como también con los que que fueron sustentados años atrás.
Ingresa a su web: Repositorio Digital de Tesis y Trabajos de Investigación PUCP

Explorar

Resultados de búsqueda

Mostrando 1 - 3 de 3
  • Ítem
    Modelo de regresión lineal usando una mixtura de distribuciones senh-normal
    (Pontificia Universidad Católica del Perú, 2023-09-27) Palomino Ore, Roussel Simpson; Benites Sánchez, Luis Enrique
    La distribución Senohiperbólico-Normal, denominada también como una variación de la distribución Birnbaum-Saunders, surgió inicialmente para estimar el deterioro en la calidad de los materiales sujetos a estrés. Asimismo, los modelos de mixtura han suscitado considerable interés en el campo de estadística debido a que permiten lidiar con situaciones en las que el comportamiento de los errores de un modelo con ajuste lineal se aleja significativamente de la normalidad. Esta tesis aborda los dos temas mencionados mediante la presentación de un modelo de ajuste lineal usando una mixtura de distribuciones Senohiperbólico Normal o Log-Birnbaum-Saunders. Esta propuesta es una familia versátil de distribuciones de probabilidad que posibilita representar datos que presentan multimodalidad además de provenir de poblaciones heterogéneas. Para conseguir los estimadores de máxima verosimilitud se emplea el algoritmo EM con maximización condicional. Asimismo, se llevan a cabo estudios de simulación y análisis de conjuntos de datos reales para demostrar la utilidad del método propuesto. Por último, se implementa la propuesta del algoritmo y los métodos en el software R.
  • Ítem
    Modelo de regresión lineal con censura basado en una mixtura finita de una distribución normal asimétrica
    (Pontificia Universidad Católica del Perú, 2023-05-29) Yábar Geldres, Ingrid Alicia; Benites Sánchez, Luis Enrique
    El presente trabajo de tesis propone estudiar el modelo de regresión lineal con censura basado en una mixtura finita de una distribución normal asimétrica (NA), con adaptación a diferente número de componentes. Este enfoque permite modelar datos continuos con gran flexibilidad, acomodando simultáneamente multimodalidad, colas pesadas y asimetría, dependiendo de la estructura de los componentes de la mixtura. Se implementa un algoritmo de tipo EM analíticamente manejable y eficiente para calcular iterativamente las estimaciones de máxima verosimilitud de los parámetros, mediante aproximaciones estocásticas (SAEM). El algoritmo propuesto tiene algunas expresiones cerradas en el paso-E, por lo que la obtención de los errores estándar se da por el método Bootstrap. Asimismo, se realiza un estudio de simulación con el fin de evaluar si el método propuesto permite recuperar los parámetros del modelo mediante el uso del algoritmo SAEM. Por otro lado, se realiza la aplicación del modelo propuesto para el estudio de la participación en la fuerza laboral de las mujeres casadas usando la base de datos de la Universidad de Michigan (Mroz, 1987). Como segunda aplicación se utiliza un conjunto de datos de clientes que entraron en campaña en una entidad financiera local con el fin de estimar sus ingresos.
  • Ítem
    Mixtura finita de una distribución Birnbaum-Saunders basado en la familia de mixtura en parámetros de escala de distribuciones normal asimétrica
    (Pontificia Universidad Católica del Perú, 2021-10-06) Gavidia Pucllas, Daniel Elías; Benites Sánchez, Luis Enrique
    La presente tesis muestra la distribución mixtura de distribuciones Birnbaum-Saunders basados en mixturas de escala normal asimétrica (MF-BS-MENA). Este modelo es una extensión a la propuesta de Maehara (2018a) para datos unimodales basados en distribuciones con mixtura de escala normal asimétrica utilizada para modelar datos con percentiles extremos y altamente concentrados a la izquierda de la distribución. El modelo propuesto permite modelar datos con dos o más componentes de mixtura de distribuciones asimétricas como la t de Student asimétrica (TA), la Slash asimétrica (SLA), y la normal contaminada asimétrica (NCA). Para estimar los parámetros del modelo propuesto se presenta un método de estimación basado en el algoritmo de maximización condicional de la esperanza (una extensión del algoritmo EM). Además, se desarrollan simulaciones que muestran la precisión de las estimaciones y los errores estándar. Por último, se realizan aplicaciones con un conjunto de datos reales.