Tesis y Trabajos de Investigación PUCP

URI permanente para esta comunidadhttp://54.81.141.168/handle/123456789/6

El Repositorio Digital de Tesis y Trabajos de Investigación PUCP aporta al Repositorio Institucional con todos sus registros, organizados por grado: Doctorado, Maestría, Licenciatura y Bachillerato. Se actualiza permanentemente con las nuevas tesis y trabajos de investigación sustentados y autorizados, así como también con los que que fueron sustentados años atrás.
Ingresa a su web: Repositorio Digital de Tesis y Trabajos de Investigación PUCP

Explorar

Resultados de búsqueda

Mostrando 1 - 2 de 2
  • Ítem
    Application on semantic segmentation with few labels in the detection of water bodies from PERUSAT-1 satellite's images
    (Pontificia Universidad Católica del Perú, 2020-07-02) Gonzalez Villarreal, Jessenia Margareth Marina; Beltrán Castañón, César Armando
    Remote sensing is widely used to monitor earth surfaces with the main objective of extracting information from it. Such is the case of water surface, which is one of the most affected extensions when flood events occur, and its monitoring helps in the analysis of detecting such affected areas, considering that adequately defining water surfaces is one of the biggest problems that Peruvian authorities are concerned with. In this regard, semi automatic mapping methods improve this monitoring, but this process remains a time-consuming task and into the subjectivity of the experts. In this work, we present a new approach for segmenting water surfaces from satellite images based on the application of convolutional neural networks. First, we explore the application of a U-Net model and then a transfer knowledge-based model. Our results show that both approaches are comparable when trained using an 680-labelled satellite image dataset; however, as the number of training samples is reduced, the performance of the transfer knowledge-based model, which combines high and very high image resolution characteristics, is improved
  • Ítem
    Prototipo computacional para la detección y clasificación de expresiones faciales mediante la extracción de patrones locales binarios
    (Pontificia Universidad Católica del Perú, 2015-05-27) Cama Castillo, Yulian André; Beltrán Castañón, César Armando
    La expresión facial es uno de los medios más comunes y naturales que tiene el ser humano, para transmitir información sobre sus emociones e intenciones. Su análisis es un área de investigación activa desde el trabajo realizado por Charles Darwin en 1872 y recientemente, su reconocimiento de forma automatizada, ha tenido un gran desarrollo gracias a los avances en áreas como visión computacional y aprendizaje de máquina. A pesar de lo mencionado anteriormente, uno de los principales retos que se tiene por resolver, para lograr un sistema robusto, radica en el modo en que se extraen las características faciales; es decir, el modo en que el computador representará el rostro, que facilite la distinción de las expresiones. Factores como la iluminación de la imagen, la cercanía o lejanía del rostro en la imagen, o incluso el ángulo del rostro (oclusión) pueden afectar la correcta extracción de las características por lo que deben ser abordados para lograr de forma ideal el reconocimiento de las expresiones faciales. Este proyecto de investigación se enfoca en el estudio de la aplicación del descriptor LBP, como método basado en apariencia, para describir las expresiones en el rostro y así poder clasificarlas entre las emociones básicas mediante el uso de técnicas Boosting de aprendizaje de máquina.