Tesis y Trabajos de Investigación PUCP

URI permanente para esta comunidadhttp://54.81.141.168/handle/123456789/6

El Repositorio Digital de Tesis y Trabajos de Investigación PUCP aporta al Repositorio Institucional con todos sus registros, organizados por grado: Doctorado, Maestría, Licenciatura y Bachillerato. Se actualiza permanentemente con las nuevas tesis y trabajos de investigación sustentados y autorizados, así como también con los que que fueron sustentados años atrás.
Ingresa a su web: Repositorio Digital de Tesis y Trabajos de Investigación PUCP

Explorar

Resultados de búsqueda

Mostrando 1 - 2 de 2
  • Ítem
    Modelamiento del tiempo a la ocurrencia de un evento con tiempos discretos
    (Pontificia Universidad Católica del Perú, 2021-01-18) Huertas Quispe, Anthony Enrique; Bayes Rodríguez, Cristian Luis
    En este trabajo de tesis, se plantea estudiar el tiempo a la ocurrencia de un evento en un proceso discreto. Para ello, se considera un modelo mixtura de fracción de cura sobre una población segmentada en dos tipos de individuos: sujetos curados, o también denominados sobrevivientes a largo plazo, haciendo referencia a aquellos sujetos que no alcanzarán el evento de interés en estudio; y sujetos no curados, o también denominados sujetos susceptibles, quienes en un tiempo específico, experimentarán dicho evento de interés. Los objetivos principales de esta tesis, son el de estimar la fracción de cura, la cual está definida como la proporción de individuos curados al final del estudio, y estimar el tiempo de falla para los individuos susceptibles, entendiéndose como el tiempo a la ocurrencia del evento. Este análisis se llevará a cabo con la presencia de covariables y datos censurados, siendo la simulación e inferencia de los datos efectuados vía el software estadístico R, en donde los procesos de simulación abordarán distintos escenarios para evaluar la performance del modelo propuesto.
  • Ítem
    Inferencia bayesiana en un modelo de regresión cuantílica semiparamétrico
    (Pontificia Universidad Católica del Perú, 2015-07-20) Agurto Mejía, Hugo Miguel; Bayes Rodríguez, Cristian Luis
    Este trabajo propone un Modelo de Regresión Cuantílica Semiparamétrico. Nosotros empleamos la metodología sugerida por Crainiceanu et al. (2005) para un modelo semiparamétrico en el contexto de un modelo de regresión cuantílica. Un enfoque de inferencia Bayesiana es adoptado usando Algoritmos de Montecarlo vía Cadenas de Markov (MCMC). Se obtuvieron formas cerradas para las distribuciones condicionales completas y así el algoritmo muestrador de Gibbs pudo ser fácilmente implementado. Un Estudio de Simulación es llevado a cabo para ilustrar el enfoque Bayesiano para estimar los parámetros del modelo. El modelo desarrollado es ilustrado usando conjuntos de datos reales.