Revista de Química. Vol. 32 Núm. 2 (2018)

URI permanente para esta colecciónhttp://54.81.141.168/handle/123456789/185301

Tabla de Contenido


Editorial
  • La quinina como un símbolo de la química y del Perú Ortega-San-Martín, Luis; 1

  • Rincón Filatélico
  • El patrono de los químicos farmacéuticos Rabinovich, Daniel; 2-3

  • Premio Nobel de Química
  • Evolución Dirigida, o cómo crear enzimas para fines industriales Salas, Paloma F; 4-10

  • Artículos
  • El renacimiento de la electroquímica Leidinger, Walter; Weber, Rainer; 11-16
  • La quinina, el símbolo de la XXII Olimpiada Iberoamericana de Química-2017 Nakamatsu, Javier; Gonzales Gil, Patricia; 17-26

  • Olimpiada Peruana de Química
  • 2018, resumen de un año de gratos recuerdos y éxitos para la OPQ Chong Cáceres, Miguel Angel; Ortega-San-Martin, Luis; 27-31

  • Publicaciones científicas de la Sección Química PUCP
  • Artículos científicos de la sección química de la PUCP, 2018 (2a parte) Comité editorial de Revista de Química; 32-33

  • Tesis de Licenciatura y Maestría de la Sección Química de la PUCP
  • Tesis de licenciatura y maestría Sección Química de la PUCP, 2018 (2ª parte) varios autores; 34-40
  • Explorar

    Resultados de Búsqueda

    Mostrando 1 - 1 de 1
    • Ítem
      Evolución Dirigida, o cómo crear enzimas para fines industriales
      (Pontificia Universidad Católica del Perú, 2019-02-22) Salas, Paloma F.
      For decades, synthetic chemists have sought to make industrial-scale catalysts as efficient and exceptionally selective as enzymes are in biological systems but, unfortunately, this task has proven evasive. Efforts then focused on making enzymes useful for the industry, and protein engineering had the task of adapting natural enzymes to work in conditions of industrial-scale processes. The approach called directed evolution is one of the models used to carry this out. Inspired by the natural evolution of species, this model proposes to evolve enzymes in an accelerated way, within the laboratory, in such a way that the manipulated enzyme exhibits the properties desired for its industrial application. Directed evolution is responsible, for example, for the industrial-scale production of enzymes included in household detergents and of the enzymes used by the pharmaceutical industry for the generation of intermediates, which are synthesized by microorganisms that express the mutated enzyme evolved in the laboratory. Today, these enzymes, some in industrial use and many others still in the exploratory stage, can catalyze very efficiently synthetic processes that form even non-natural compounds such as organosilanes  and organoboranes.