(Pontificia Universidad Católica del Perú, 2016) Fernández, Percy; Saravia, Nancy
Foliaciones de tipo curva generalizada son una clase de foliaciones que tienen una reducción de singularidades similar a la que existe para curvas. Camacho, Lins Neto and Sad mostraron que aquellas que son no dicríticas tienen la misma reducción que la de su conjunto de separatrices. En este artículo presentamos una prueba novedosa del teorenma de Dulac utilizando técnicas de Rouillé. Este teorema muestra que para foliaciones no dicríticas de tipo curva generalizada su polígono de Newton y el su conjunto de sepatrices coinciden. Mediante el teorema de Dulac retornamos a un resultado conjeturado por Loray que no es del todo cierto, como fue anotado por Fernández, Mozo y Neciosup.
(Pontificia Universidad Católica del Perú, 2016) Rodríguez, A. Miguel
Presentamos (sin demostración) una versión del teorema de Bott para un orbifold complejo compacto y con singularidades aisladas. A continuación deducimos algunas consecuencias importantes de este teorema, y finalmente daremos algunas aplicaciones para foliaciones holomorfas en espacios proyectivos ponderados.