Invariant and reversible measures for random walks on Z

dc.contributor.authorRivasplata Zevallos, Omar
dc.contributor.authorSchmuland, Byron
dc.date.accessioned2017-09-25T21:45:37Z
dc.date.available2017-09-25T21:45:37Z
dc.date.issued2005es_ES
dc.description.abstractEl artículo no presenta resumenes_ES
dc.description.abstractIn this expository paper we study the stationary measures of a stochastic process called nearest neighbor random walk on Z, and further we describe conditions for these measures to have the stronger property of reversibility. We consider both the cases of symmetric and non-symmetric random walk.en_US
dc.formatapplication/pdf
dc.identifier.urihttp://revistas.pucp.edu.pe/index.php/promathematica/article/view/10231/10676
dc.language.isospa
dc.publisherPontificia Universidad Católica del Perúes_ES
dc.publisher.countryPE
dc.relation.ispartofurn:issn:2305-2430
dc.relation.ispartofurn:issn:1012-3938
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0*
dc.sourcePro Mathematica; Vol. 19, Núm. 37-38 (2005)es_ES
dc.subjectRandom Walkes_ES
dc.subjectInvariant Measurees_ES
dc.subjectReversible Measurees_ES
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#1.01.00
dc.titleInvariant and reversible measures for random walks on Zes_ES
dc.typeinfo:eu-repo/semantics/article
dc.type.otherArtículo

Files