Clasificación analítica de ciertos tipos de foliaciones cuspidales (C3,0)

No hay miniatura disponible

Fecha

2014-10-24

Título de la revista

ISSN de la revista

Título del volumen

Editor

Pontificia Universidad Católica del Perú

DOI

Resumen

Sin duda, uno de los problemas ubicuos de las matemáticas es el de la clasificación de objetos, una vez definido un criterio de equivalencia. Así pues, se clasifican estructuras algebraicas, objetos geométricos, o ecuaciones, siguiendo criterios de isomorfismo, conservación de ciertas estructuras geométricas, o relación entre los espacios de soluciones. Uno de los objetivos de estudiar estas clasificaciones es hallar un representante “sencillo” a cada una de las clases de equivalencia, cuyas propiedades, fáciles de estudiar, permiten deducir por analogía propiedades de los objetos más generales. Mencionamos algunos ejemplos conocidos. 1. Toda matriz cuadrada es equivalente a una matriz en forma de Jordan. Así deducimos por ejemplo, la descomposición de un endomorfismo en su parte semisimple y nilpotente. 2. Todo grupo abeliano finito es isomorfo a una suma directa de grupos cíclicos. Un problema de equivalencia similar para grupos simples finito ocupó la labor de numerosos matemáticos durante décadas. 3. Toda superficie topológica compacta es homeomorfa a uno de los siguientes modelos: una esfera, una suma conexa de toros, o una suma conexa de un plano proyectivo y una de las anteriores. Problemas análogos en dimensión superior han resultado mucho más difíciles de abordar. Así, la célebre conjetura de Poincaré está relacionada con la clasificación de 3-variedades topológicas compactas. En particular, se puede mostrar que si una tal variedad tiene la homología de una 3-esfera S³, es homeomorfo a ella. La importancia de resolver este tipo de problemas muestra que la resolución de dicha conjetura en cualquier dimensión ha sido merecedora de tres Medallas Fields (Stephen Smale en 1966, Michael Freedman en 1986 y Grigori Perelman en 2006). La presente memoria se enmarca dentro de los problemas de clasificación. Más específicamente, nos proponemos estudiar la clasificación analítica, mediante la holonomía proyectiva, de ciertos tipos de foliaciones holomorfas singulares de codimension uno en (C³, 0). En concreto, el estudio que presentamos en esta tesis se escoge con la finalidad de establecer, hasta qué punto, una técnica sencilla, nos permite clasificar analíticamente las foliaciones cuspidales en (C³, 0). De este modo, el desarrollo de esta tesis se fundamenta en una interrogante fundamental que da sentido y forma a todos nuestros planteamientos. Esta interrogante es el siguiente ¿hasta qué punto la técnica de clasificación analítica usada por R. Moussu [Mou2], D. Cerveau y R. Moussu [CMou], R. Meziani [Me], M.Berthier, R. Meziani y P. Sad [BMS], entre otros, nos permite clasificar analíticamente las foliaciones cuspidales en (C³, 0)?. Esta pregunta, se presta a múltiples respuestas y a variados planteamientos, pero en el caso que nos ocupa cabe destacar un planteamiento que posteriormente pasaremos a describir

Descripción

Palabras clave

Foliaciones (Matemáticas)

Citación

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced

Licencia Creative Commons

Excepto se indique lo contrario, la licencia de este artículo se describe como info:eu-repo/semantics/openAccess