El Teorema de De Rham-Saito
No Thumbnail Available
Date
2012
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Pontificia Universidad Católica del Perú
Abstract
El teorema de De Rham-Saito es una generalización de un lema debido a De Rham [3], el cual fue enunciado y usado en [11] por Kyoji Saito, al no haber prueba de este teorema Le Dung Trang anima a Saito a publicar la prueba que puede ser vista en [12], lo cual indirectamente nos motiva a detallarla prueba en este articulo por las muchas aplicaciones que tiene, destacamos el algoritmo de Godbillon-Vey [5]; en la prueba del Teorema de Frobenius clásico dada en [2]; en [8] vemos unas aplicaciones interesantes; en la prueba del Teorema de Frobenius con singularidades [7]; en [1] se detalla la prueba realizada por Moussu y Rolin [10].
The theorem of De Rham-Saito is a generalization of a lemma due to De Rham [3], which was announced and used in [7] by Kyoji Saito, as noproof of this theorem was available, Le Dung Trang encouraged to Saito to publish the proof that can be seen in [8], which indirectly encourages us to detail the proof in this article for the many applications it has,we highlight the Godbillon-Vey algorithm [4]; in the proof of Theorem classical Frobenius given in [2]; in [6] we see some interesting applications, in the proof of Frobenius theorem with singularities [5]. In [1] we givefull details of the proof given by Moussu and Rolin.
The theorem of De Rham-Saito is a generalization of a lemma due to De Rham [3], which was announced and used in [7] by Kyoji Saito, as noproof of this theorem was available, Le Dung Trang encouraged to Saito to publish the proof that can be seen in [8], which indirectly encourages us to detail the proof in this article for the many applications it has,we highlight the Godbillon-Vey algorithm [4]; in the proof of Theorem classical Frobenius given in [2]; in [6] we see some interesting applications, in the proof of Frobenius theorem with singularities [5]. In [1] we givefull details of the proof given by Moussu and Rolin.
Description
Keywords
1-Forms, Zero Divisors, Depth, Localization, 1-Formas, Divisores de Cero, Profundidad, Localización
Citation
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as info:eu-repo/semantics/openAccess