Invariancia del tensor curvatura en estructuras H-equivalentes
| dc.contributor.author | MartΓnez, Rodrigo | |
| dc.contributor.author | GuzmΓ‘n, Cristino | |
| dc.date.accessioned | 2017-09-25T21:46:34Z | |
| dc.date.available | 2017-09-25T21:46:34Z | |
| dc.date.issued | 2004 | es_ES |
| dc.description.abstract | Dos estructuras: π = ( π , β , π ) ΞΌ=(M,β,g) y π Λ = ( π , β Λ , π ) ΞΌ Λ β =(M, β Λ ,g) tales que: { ( β π π ) ( π , π ) = π΄ ( π , π , π ) , π΄ ( π , π , π ) β πΆ β ( π ) π ( π , π ) = β π π β β π π β [ π , π ] { (β U β g)(V,W)=A(U,V,W),A(U,V,W)βC β (M) S(U,V)=β U β Vββ V β Uβ[U,V] β (1) { ( β Λ π π ) ( π , π ) = 0 π Λ ( π , π ) = β Λ π π β β Λ π π β [ π , π ] , π , π , π β π ( π ) { ( β Λ U β g)(V,W)=0 S Λ (U,V)= β Λ U β Vβ β Λ V β Uβ[U,V],U,V,WβΟ(M) β son H-equivalentes, si existe una aplicaciΓ³n π» : π ( π ) Γ π ( π ) β π ( π ) H:Ο(M)ΓΟ(M)βΟ(M), tal que: β Λ π π = β π π + π» ( π , π ) . β Λ U β V=β U β V+H(U,V). (2) | es_ES |
| dc.format | application/pdf | |
| dc.identifier.uri | http://revistas.pucp.edu.pe/index.php/promathematica/article/view/10217/10662 | |
| dc.language.iso | spa | |
| dc.publisher | Pontificia Universidad CatΓ³lica del PerΓΊ | es_ES |
| dc.publisher.country | PE | |
| dc.relation.ispartof | urn:issn:2305-2430 | |
| dc.relation.ispartof | urn:issn:1012-3938 | |
| dc.rights | info:eu-repo/semantics/openAccess | es_ES |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0 | * |
| dc.source | Pro Mathematica; Vol. 18, NΓΊm. 35-36 (2004) | es_ES |
| dc.subject | Invariantes | es_ES |
| dc.subject | CΓ‘lculo de Tensores | es_ES |
| dc.subject | Curvatura En Superficies | es_ES |
| dc.subject.ocde | https://purl.org/pe-repo/ocde/ford#1.01.00 | |
| dc.title | Invariancia del tensor curvatura en estructuras H-equivalentes | es_ES |
| dc.type | info:eu-repo/semantics/article | |
| dc.type.other | ArtΓculo |
