Problema de Cauchy para un Sistema de Tipo Benjamin-Bona-Mahony
No Thumbnail Available
Date
2012
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Pontificia Universidad Católica del Perú
Abstract
Dado el problema de valor inicial para un sistema de dos ecuaciones de Benjamin-Bona-Mahony (BBM) acopladas a través de los términos dispersivos y no lineales, se demuestra que está bien colocado localmente y globalmente en los espacios Hs × Hs con s≥0.
It is proved that the initial value problem for a system of two Benjamin-Bona-Mahony equations coupled through both dispersive and nonlinear terms is locally and globally well posed in the Soboloev spaces Hs ×Hs with s ≥ 0
It is proved that the initial value problem for a system of two Benjamin-Bona-Mahony equations coupled through both dispersive and nonlinear terms is locally and globally well posed in the Soboloev spaces Hs ×Hs with s ≥ 0
Description
Keywords
Nonlinear Dispersive Equations, Local And Global Well Posedness, Bourgain’s Method Of Nonlinear Estimates, Bourgain’s Method Of High And Low Frequency, Ecuaciones Dispersivas No Lineales, Buena Formulación Local y Global, Método de Bourgain de los Estimados No Lineales, Método de Bourgain de Alta y Baja Frecuencia
Citation
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as info:eu-repo/semantics/openAccess