Problems in incompressible linear elasticity involving tangential and normal components of the displacement field
No Thumbnail Available
Date
1998
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Pontificia Universidad Católica del Perú
Abstract
El artículo no presenta resumen
We consider the linear system -∆ u + grad p = f plus the divergence-free condition div u = O, in a bounded and conected but non simply connected open set Ω of R³, with a boundary ᴦ of C∞ class. Using orthogonal decompositions of the Hilbert space of square integrable vector fields on Ω, we show well posedness for two boundary value problems involving normal or tangential components of the displacement field on ᴦ.
We consider the linear system -∆ u + grad p = f plus the divergence-free condition div u = O, in a bounded and conected but non simply connected open set Ω of R³, with a boundary ᴦ of C∞ class. Using orthogonal decompositions of the Hilbert space of square integrable vector fields on Ω, we show well posedness for two boundary value problems involving normal or tangential components of the displacement field on ᴦ.
Description
Keywords
Elasticidad, Matemáticas
Citation
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as info:eu-repo/semantics/openAccess