A conjecture about the non-trivial zeroes of the Riemann zeta function

dc.contributor.authorAlcántara Bode, Julio
dc.date.accessioned2017-09-25T21:47:13Z
dc.date.available2017-09-25T21:47:13Z
dc.date.issued2007es_ES
dc.description.abstractSome heuristic arguments are given in support of the following conjecture: If the Riemann Hypothesis (RH) does not hold then the number of zeroes of the Riemann zeta function with real part σ >  ½ is infinite.es_ES
dc.formatapplication/pdf
dc.identifier.urihttp://revistas.pucp.edu.pe/index.php/promathematica/article/view/10245/10690
dc.language.isospa
dc.publisherPontificia Universidad Católica del Perúes_ES
dc.publisher.countryPE
dc.relation.ispartofurn:issn:2305-2430
dc.relation.ispartofurn:issn:1012-3938
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0*
dc.sourcePro Mathematica; Vol. 21, Núm. 41-42 (2007)es_ES
dc.subjectRiemann Hypothesises_ES
dc.subjectNon-Trivial Zeroeses_ES
dc.subjectConjecturees_ES
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#1.01.00
dc.titleA conjecture about the non-trivial zeroes of the Riemann zeta functiones_ES
dc.typeinfo:eu-repo/semantics/article
dc.type.otherArtículo

Files